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Abstract: The model of two-sublattice pseudospin lattice coupled mode for Rochelle salt has been 

modified by adding third and fourth-order phonon anharmonic interaction terms and electric field 

term. By using double-time temperature  dependent Green's function method, expressions for shift, 

width, soft mode frequency, dielectric constant and loss tangent were obtained for Rochelle salt 

crystal. By fitting model values of physical quantities, temperature dependence of soft mode 

frequency, dielectric constant and loss tangent have been calculated for different fields for Rochelle 

salt. Theoretical results agree with the experimental results of others. 
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Introduction 

Potassium sodium tartrate (NaKC4H4O64H2O) or Rochelle salt (RS) is the material in which 

ferroelectricity was discovered earliest. Large crystals of Rochelle salt are easy to grow. 

Although, it is the earliest ferroelectric material but is still the subject of intensive study due 

to its two transitions. It is ferroelectric between 255 K to 297 K showing monoclinic 

structure in ferroelectric phase. On duteration, the transition temperatures shift to 251 K and 

306 K respectively. The Theories of ferroelectric properties of Rochelle salt were initiated 

by Muller
1
. Mason

2
 assumed that the displacement of the proton is the O-(H2O)10 hydrogen 

bond is the ferroelectric dipole and was able to obtain two curie points in agreement with 

observation. Chaudhuri et al.,
3 

have used two-sublattice-pseudospin-lattice coupled mode 

model along with a fourth–order phonon anharmonic term. However, they decoupled the 

correlations at an early stage and neglected third-order anharmonic interaction term. They, 

therefore, could not obtain better and convincing results. Hlinka et al.,
4
 Shiozaki et al.,

5
 

Noda et al.,
6
 Kikuta et al.,

7
 have experimentally studied dielectric and other properties of 

Rochelle salt crystal. In the present work an external electric field term, third-order phonon 

anharmonic interaction term and fourth-order phonon anharmonic interaction term, have 

been added in the two-sublattice pseudospin-lattice coupled mode model. By applying 

double time thermal  Green’s function method
8
, expressions  for shift, width, renormalized  
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soft mode frequency, dielectric constant and loss tangent have been evaluated. By using 

model values of various physical quantities given by Chaudhuri et al.,
3
 temperature and field 

dependences of soft mode frequency, dielectric constant and loss tangent have been 

calculated. The theoretical results have been compared with experimental data of Sandy and 

Jones
9 
for Rochelle salt.      

Model Hamiltonian 

For Rochelle salt, the extended two-sublattice pseudospin-lattice coupled mode model, along 

with third-and fourth-order phonon anharmonic interaction terms is expressed as  
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 Where Ω  is proton tunnelling frequency, S
z
 and S

x
 are components of pseudospin 

variables, Jij is exchange interaction constant between spin of same lattices, Kij is exchange 

interaction constant between spins of neighbouring lattices, Vik is spin-lattice interaction 

constant, µ is dipole moment of O-H…O bond, Ak and Bk are position and momentum 

operators, ωk is harmonic phonon frequency, V
(3)

 and V
(4)

 are third-and fourth-order atomic 

force constants
10,11

. 

Green’s function 

We consider the Green's function (GF) 
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 Differentiating Eq. (2) with respect to time t and t' two times each using Hamiltonian 

(1), Fourier transforming it and writing into Dyson's equation form we obtain 
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Now ( )ωP  contains higher order Green’s functions 

 bcadbdaccdababcd ++=                        (8) 

 The simpler Green’s functions are solved in zeroth-order approximation, i.e. higher 

order Green’s functions are neglected. 

Shift, Width and Ferroelectric mode frequency 

Then ( )ωP  is resolved into its real ( )ω∆  and imaginary parts ( )ωΓ . The Green’s function 

given in Eq. 3 finally becomes 
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 In Eqs 13 and 18, kω
~~

is renormalized phonon frequency and )(ωkΓ  is phonon width. 

These are obtained by solving phonon Green’s function 
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and 

)(~~~ 22
TAkkk += ωω                                                        (22) 

Now Green’s function (9) becomes  
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Solving Eq 24 self consistently one gets  
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Dielectric constant and loss tangent 

The response of a crystal to electromagnetic field is expressed by electrical susceptibility 

given by  

( )∈+ωµπ−=χ ∈→ iGN2 ij

2lim

0                                   (26) 

 Where N is number of dipoles having dipole moment µ  in the sample. The dielectric 

constant ( )ω∈  is related to susceptibility as 

πχ41+∈=                                                                     (27) 

We have from Eqs 26, 27 and 23 
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since ( )[ ]1〉〉∈ ω , in ferroelectrics . 

 Eq. 28 shows that dielectric constant explicitly depends upon electric field through 

Ω
~

.The dissipation of power in dielectrics is expressed as tangent losss given by    
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 Eq. 29 shows that loss tangent explicitly depends upon electric field since both Ω
~

and 

)(ωΓ  contain electric field terms. 

Numerical calculations   

By using model values given in Table 1 the temperature and field dependences of shift, 

width, soft mode frequency and dielectric constant and loss have been calculated (Figure 1, 

2 & 3) and compared with experimental results of Sandy and Jones
9
. 

Table 1. Model values of physics parameters for Rochelle salt crystal 

J, 

cm
-1

 

K, 

cm
-1

 
Tc1, K Tc2, K 

Ω, 

cm
-1

 

∆, 

cm
-1

 
η, 

cm
-1

 

Vik, 

cm
-1

 
ωk, 

cm
-1

 
Akgx10

17
 erg/K 

354 351 255 2.96 1.82 0.678 5.51 11.5 27.20 5.73 
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Figure 1. Calculated temperature dependence of soft mode frequency of RS with 

comparision of experimental data 

 
 
Figure 2. Calculated temperature dependence of dielectric constant of RS with comparision 

of experimental data 

Results and Discussion 

Earlier researchers
3
 have not considered third order phonon anharmonic interaction term. 

They decoupled the correlation at an early stage, due to which some important interactions 

disappeared from their expressions. It can be seen from our expressions that our frequency 

Ω
~

 is the same as the initial frequency of Chaudhuri et al
3
. However, our soft mode 

frequency −Ω̂  contains extra terms )(ω∆ . The soft mode frequency of Chaudhuri et al.,
3
 

contains terms like )(ω∆ . But our  soft  mode  frequency −Ω̂ contains extra term in kω
~~

 and 
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)(ωkΓ . These extra terms are 
2

21

3 ),,( kkkV − term given in )(ωk∆  in )(ωkΓ . These 

terms differentiate our expressions with the expressions given in the work of Chaudhuri et al
3
. 

The inclusion of third-order phonon anharmonic interaction terms is quite important since its 

inclusion gives correct experimental temperature dependence of ferroelectric and dielectric 

properties of Rochelle salt crystal. The phonon anharmonic interactions modify the soft 

mode frequency through spin-lattice interaction. The soft mode frequency increases while 

both dielectric constant and loss tangent decrease with the increase in the electric field 

strength. This finding is found to be in agreement with the experimental observations. 

Conclusion 

The two sublattice-pseudospin-latttice coupled mode model along with third and fourth 

order phonon anharmonic interaction terms explains well the temperature dependence of soft 

mode frequency, dielectric constant and loss tangent in Rochelle salt in the presence of 

electric field. Theoretical results agree well with experimental results of Sandy and Jones
9
. 
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