RESEARCH ARTICLE

Determination of Copper in Water, Vegetables, Foodstuffs and Pharmaceuticals by Direct and Derivative Spectrophotometry

K. ASHOK RAO^{*}, S. SIVARAMAIAH^{*}, K. SARA SUBUDHI, D. SREEVANI, Y. UMAMAHESWARI and G. V. HARITHA

Research Laboratories, Department of Chemistry, V. R. Group of Institutions Nellore, A.P. India

a shokrao. research @gmail.com

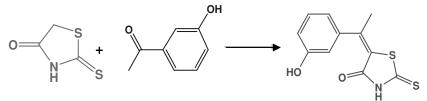
Received 7 June 2012 /Accepted 22 June 2012

Abstract: The quantification of copper in water, vegetables, foodstuffs, human hair and pharmaceutical samples was determined by a simple more sensitive and selective spectrophotometric method. Cu(II) forms an orange – red color complex with 5-{ α –methyl-3-hydroxy benzylidene} rhodanine [5M, 3H-BR], at pH 5.5 in sodium acetate and acetic acid buffer. The maximum absorbance was measured at 430 nm. The Beer's law is obeyed in the range of (0.05 µg -13 µg/mL). The molar absorptivity (ε) and the Sandell's sensitivity of the complex were 0.6027× 10⁴ mol⁻¹ cm⁻¹ and 0.01054 µg cm⁻² respectively. First, second and third derivative spectrophotometry were also proposed and employed successfully for the determination of copper in the supra. The performance of the present method was also evaluated in terms of RMSEP, REP and RSD, students *t*- test. This indicates the greater importance of the method than other methods reported in the literature.

Keywords: Copper determination, Direct and derivative spectrophotometry, $5-\{\dot{\alpha} - Methyl-3-hydroxy benzylidene\}$ rhodanine, RMSEP, REP, RSD

Introduction

Metals at trace levels are components of natural biosphere. Hence they are required for body structure, fluid balance, protein and to produce hormones. Some of them are considered essential, but at high concentration they are toxic. The range between essentiality and toxicity is often very small. Copper occurs in nature as mineral compounds, 75% copper that is mined is used in the electrical industries, house hold-utensil, metallic blends and pigments¹. From these sources, it will enter as pollutant and pollutes the water, soil, foodstuffs, flora and fauna.


It is an essential to activate enzymes involved in² cellular respiration- (cytochrome-C oxidase), iron oxidation- (ceruloplasmin), connective tissue formation-(lysyl oxidase) neuro transmitter biosynthesis-(Mono Amine oxidase) and pigment formation-(Tyrosanase). On over healthy limit accumulates in the liver causing dizziness, vomiting, diarrhoea, transpiration and depending on its concentration it leads to death³⁻⁷. In chronic exposure, liver, kidney and spleen may be injured and may develop anemia. The deficiency of copper causes the coronary,

artery; heart diseases and can promote connection between sugar molecules and protein molecules which results in tissue damification in diabetic people⁹⁻¹⁰. Therefore, from this point of view, it is necessary to establish a rapid simple, sensitive and accurate procedure for the determination of copper concentration. Several techniques have been used for the determination of copper in different samples¹¹⁻¹⁵. However these methods have the disadvantages that the operation of the instrumentation used, is complex and the price of the instrumentation is expensive compared with UV-visible spectrophotometry.

Hitherto several complexing agents¹⁶⁻²⁵ are reported for the spectrophotometric determination of copper. Spectrophotometry still represents an attractive technique for the determination of metal ions in aqueous media, because of its simplicity, being inexpensive and is readily availabble²⁶. Therefore in the present investigation a selective reagent $5-\{\dot{\alpha} - \text{methyl-3-hydroxy benzylidene}\}$ rhodanine [5M,3H-BR] was chosen for the UV- visible spectrophotometric determination of copper(II) in the samples selected.

Experimental

The ligand 5-{ α -methyl-3hydoxy benzylidene}rhodanine, prepared according to the procedure reported previously²⁷. 120 mg of ammonium acetate was added to a mixture of 360 mL glacial acetic acid and 13 mL benzene then 2 g of rhodanine was added. The reaction mixture was stirred and boiled for 5 minutes. 2 g of 3-hydroxy acetophenone was then added to the reaction mixture then refluxed to overnight. Later it was allowed to cool at room temperature which gives a yellow precipitate. It is separated by filtration, washed with water and purified by recrystallization from methanol/ water (1:1) mixture melting point is 201 $^{\circ}$ C – 202 $^{\circ}$ C. The structure was confirmed from Mass IR, NMR spectra.

Scheme 1. Formation of $5-\{\dot{\alpha} - \text{methyl}-3-\text{hydroxy benzylidene}\}$ rhodanine

Preparation of solutions

All the chemicals were of AnalaR grades from Fisher Scientific Qualigens, India.

Cu(II) - solution

Stock standard Cu(II) solution was prepared by dissolving 0.3929 g of Cu(II) sulphate pentahydrte in double distilled water containing 1000 μ g/mL. The solution was standardized by idometry²⁸. The working standard solutions were prepared by suitable dilution of the stock solution.

Buffer solutions

Buffer solutions were prepared by employing 0.1 M acetic acid and 0.1 M sodium acetate²⁹⁻³⁰ in the pH range 3-10. Borate buffers were also prepared in the pH range 3-12 from 1 M boric acid adjusting with 1 M sodium hydroxide.

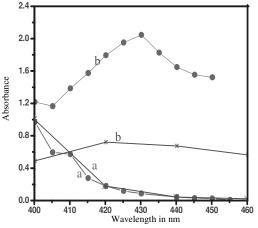
Solutions of diverse ions

Solutions of diverse ions containing 1000 μ g/mL were prepared by dissolving required amounts of salts of the corresponding ions in double distilled water

Reagent solution

The reagent stock solution (0.1 M) was prepared by dissolving 1.255 g of [5M, 3H, BR] in DMF or methanol. This was diluted to the required concentration using 40% DMF.

Instruments


Elico micro processor based double beam UV - visible spectrophotometer SL 210 equipped with 1 cm quartz cells were used for spectrophotometric measurements. The pH measurements are made with Elico digital pH meter L.I 127 model.

General procedure for studies of different parameters

To ensure the complexation ratio between the Cu(II) and [5M, 3H-BR], and to quantification of the Cu(II) in the sample solutions the following procedure was performed. To an aliquots of sample solution containing μ g quantities of Cu(II) was added to a series of comparison tubes followed by 5 mL of acetic acid and sodium acetate buffer to adjust the pH5.5,then equilibrated with 5 mL of [5M, 3H-BR] solution (in 40% DMF) for 10 min and diluted to 20 mL with double distilled water. The absorbance of orange - red color complex formed was measured against a similarly prepared reagent blank at 430 nm. The composition of the complex was computed by Job's continuous variation, mole ratio and slope ratio methods. The amount of Cu(II) present in the sample solutions³¹⁻³⁸ prepared, were computed from the standard calibration carves in the range 0.05 to 13 µg both by inspecting the direct and derivative spectra.

Results and Discussion

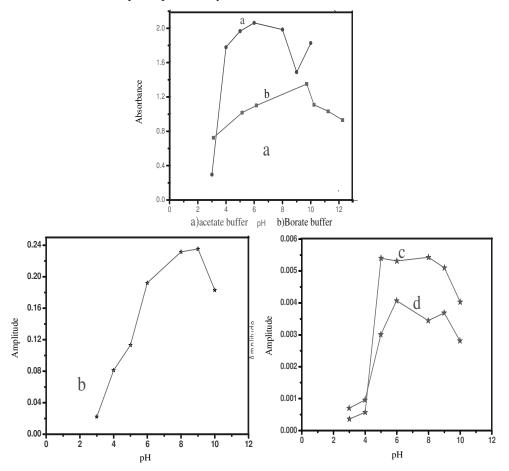

The absorption spectra of an orange–red color complex of [Cu(II) - 5M, 3H, BR] were recorded in the wave length region 400-600 nm against the reagent blank (Figure 1). It was observed that complex showed the maximum absorbance at 420 nm in borate buffers and at 430 nm in acetate buffers, whereas in acetate buffers the complex absorbance was found to be maximum. Hence, the 430 nm in acetate buffers were chosen for the proposed studies

Figure 1. Absorption spectra of; a) 5M 3H BR *vs.* buffer blank; b) Cu(II)-5M 3H BR complex *vs.* reagent blank acetate buffer ^{*}Borate buffer Cu(II)=1.6x10⁻³ M (100 μ g), 5M 3H BR =3x10⁻³ M

Effect of the pH

The pH of the aqueous solution is an important parameter for complex formation. The influence of pH of the aqueous solutions on the formation of [Cu(II) - 5M, 3H, BR] complex were investigated at 430 nm using various buffer solutions of different pH values (Figure 2). The complex with maximum absorbance was observed at pH values 5 to 8 in acetate buffers and 8 to 10 in borate buffers. However, the maximum absorbance was found in acetate buffers. In the light of these findings all subsequent studies were carried out at pH 5.5 for direct and derivative spectrophotometry

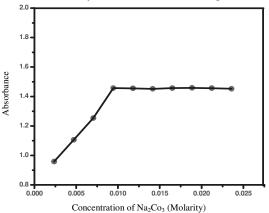
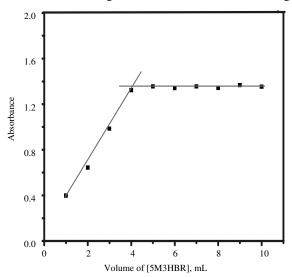
Figure 2. Effect of pH on the absorbance of [Cu(II)-5M 3H BR] system (a) Direct spectrophotometry (b) 1^{st} derivative (c) 2^{nd} derivative (d) 3^{rd} derivative Cu(II)=[5M 3H BR] =3x10⁻⁴ M

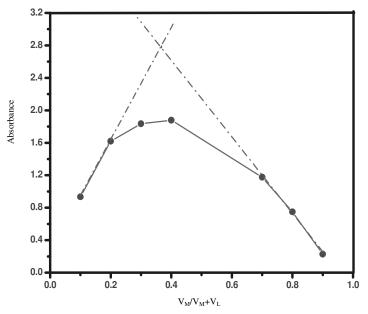
Effect of solvent and reagent concentration

A tenfold molar excess of the reagent was necessary for the maximum color development. An orange – red color formation between Cu(II) and reagent was instantaneous and the color was stable for more than 36 hours. The complex was found to soluble in 40% of DMF. So the reagent solutions were prepared in 40% (v/v) DMF.

Effect of salting out agent

The complexation of Cu(II) with the (5M, 3H, BR) is certain and effective at pH 5.5. However various salting out agents such as sodium sulphate, sodium chloride, ammonium sulphate and sodium carbonate are used for the enhancement of the color of the metal complex in the analysis of the different samples. It was observed that, the presence of 0.01 M sodium corbonate effectively increases the color (Figure 3).


Figure 3. Effect of Na₂CO₃ on the complexation

Nature of the complex

The composition of the complex and stoichiometric ratio between the metal to ligand was determined by mole ratio, slope ratio and jobs continuous variation methods elating of these experimental results indicates the Cu(II) forming the 1:4 complex with the reagent and the stoichiometric ratio is 1:2. So the reagent was found to be a bidental ligand (Figure 4-6).

Figure 4. Mole ratio plot, pH:5.5 Cu(II)=[5M 3H BR]= 1.6×10^{-4} M, volume of Cu(II)=1 mL (10 µg)

Figure 5. Job's continuous variation method for the Cu(II)-[5M 3H BR] complex, Cu(II)= $[5M 3H BR] = 1.6 \times 10^{-4} \text{ M}, \text{ pH:} 5.5, \lambda_{\text{max}}: 430 \text{ nm}$

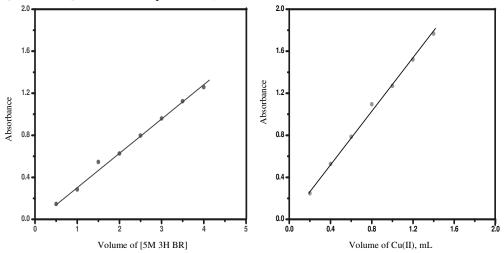
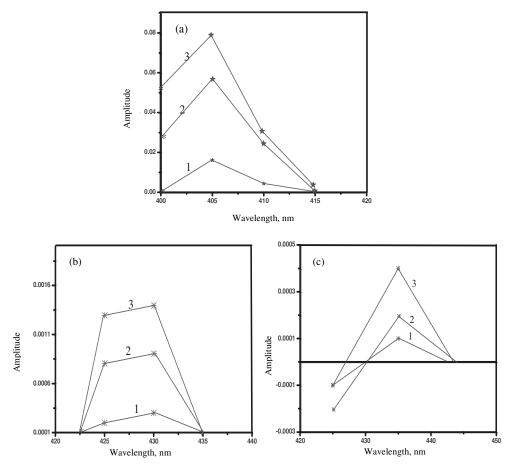


Figure 6. Slope ratio method, Cu(II)=[5M 3H BR]= 1.6×10^{-4} M pH:5.5 λ_{max} =430

Performance for the calibration of proposed method

Beer's law was obeyed in the concentration range 0.05-13 μ g/mL of Cu(II) in different sample solutions. The molar absorptivity of the complex was 0.6027×10⁴ moles⁻¹ cm⁻¹. The Sandell's sensitivity of the method was found to be 0.01054 μ gcm⁻². The standard deviation, correlation coefficient and other statistical parameters of the method are evaluated to ten replicate determinations Table 1.

Concentration Range, µg	Least square equation Y = A + B X A = Intercept B = Slope	Correlation Coefficient (r)	Standard Deviation	RSD %	REP %	Amount determined In ten replicate samples, μg
0.05 -0.5	Y= - 0.00207 + 0.2398 X	1.0000	0.000769	0.1917	0.2991	0.4010,0.3997,0.4022,0.4012 0.4020,0.4012,0.4018, 0.4014, 0.4012,0.4024
0.5 -5.0	Y = - 0.0364 + 0.2466 X	1.000	0.0505	1.2241	2.6839	4.1625,4.1091,4.0275,4.1525 4.1592,4.0761,4.1475,4.1855 4.1572,4.0761.
5.0 - 13	Y = 1.4559 + 0.0103 X	0.9869	0.005957	0.0799	0.2014	7.4550,7.4469,7.4470,7.4481 7.4500,7.4470,7.4620, 7.4475, 7.4451,7.4598.


Table 1. Performance data for the calibration of proposed method

Derivative spectrophotometry

For the determination of copper derivative spectrophotometric methods are also developed. The 1st and 2nd derivative spectra show the maximum amplitude at 405 nm and 430 nm. The 3rd derivative curve amplitude becomes zero at 428 nm and maxis mum amplitude was shifted to 435-460 nm. Calibration plots drawn between the amplitude and the concentration of Cu(II) was found to be linear in the range (0.05-13 μ g/mL) The derivative amplitudes were found to be proportional to the concentration of Cu(II). The results are summarized in Table 2, Figure 7.

Linear Range, µg/mL	Calibration Equation Y = A + BX, A = Intercept, B = Slope	Wavelength, nm	Correlation Coefficient (ŗ)
	First – Derivative Spectrophotometry	405	0.9985
0.05 - 0.5	$\partial A/\partial \lambda = -0.0292 + 0.564 X$ Second – DerivativeSpectrophotometry $\partial^2 A/\partial \lambda^2 = -0.0089 + 0.0440 X$	430	1.003
	Third – Derivative Spectrophotometry	435 - 460	0.9989
	$\partial^{3} A/\partial \lambda^{3} = -0.000124 + 0.0046 X$ First – Derivative Spectrophotometry $\partial A/\partial \lambda = -0.0431 + 0.0588 X$	405	0.9937
0.5 - 5.0	Second – DerivativeSpectrophotometry	430	0.9980
	$\partial^2 A/\partial \lambda^2 = -0.000526 + 0.001207 X$ Third – Derivative Spectrophotometry $\partial^3 A/\partial \lambda^3 = -0.000116 + 0.0002656 X$	435 - 460	1.000
	First – Derivative Spectrophotometry	405	1.0032
5.0 - 13	$\partial A/\partial \lambda$ = - 0.0614 + 0.0534 X Second – DerivativeSpectrophotometry $\partial^2 A/\partial \lambda^2$ = - 0.008788 + 0.002201 X	430	0.9887
	Third – Derivative Spectrophotometry $\partial^{3}A/\partial\lambda^{3} = -0.00223 + 0.00087 X$	435 - 460	0.9907

Table 2. Calibration data for the derivative spectrophotometric determination

Figure 7. Derivative spectra of [Cu(II)-5M 3H BR] system (a) first order (b) second order (c) third order Cu(II) - $\mu g/mL$ (1) 1.5 (2) 3 (3) 4.5

Effect of diverse ions

To examine the effect of the diverse ions, 10 μ g of Cu(II) and diverse ion in question were transferred in to comparison tubes of 20 mL capacity followed by an excess of reagent solution at pH 5.5. However, in the case of interference were masked using citrate, tartarate, phosphate as masking agents. The tolerance limit was stated as the highest amount for an ion that produces an error not exceeding $\pm 3\%$ in the determination. The results are summarized in the Table 3.

Analytic conclusion

The proposed direct and derivative spectrophotometric method were employed for the determination of Cu(II) in different samples such as natural water, biological samples, foodstuffs and pharmaceutical samples. The results are summarized in the Table 4, 5 & 6. The WHO provisional guideline value of $2000 \ \mu g/L$ (2 $\mu g/mL$) of copper in drinking water could produce an adverse reaction³⁹. This is computable with the United states drinking water action level of $1300 \ \mu g/mL$ (1.3 $\mu g/mL$)⁴⁰. In the present method, the content of copper in buffalo's milk and Cow's milk were found to be 1065-1216 $\mu g/L$, 1230-1318 $\mu g/L$ respectively.

	Diverse ion	Added as	Tolerance limit, µg/ 20 mL				
	Mg ⁺²	MgSO ₄		1000	-		
	Ba ⁺²	BaCl ₂		984			
	Co ⁺²	$Co(NO_3)_2$		675			
	Ag ⁺	AgNO ₃		750			
	Pb ⁺²	$Pb(NO_3)_2$		688			
	Se ⁺²						
		Na_2SeO_3		943			
	Ca^{+2}	$CaCl_2$		920			
	Sn ⁺²	$Sn(NO_3)_2$		1000			
	Te ⁺²	Na_2TeO_3		1000			
	Li ⁺²	LiNO ₃		785			
	Al^{+3}	$Al(NO_3)_3$		1034			
	Cr ⁺³	$K_2Cr_2O_7$		1000			
	Zn^{+2}	ZnSO ₄		902			
	Cd^{+2}	CdCl ₂		1220			
	Hg^{+2}	HgCl ₂		980			
	Mn ⁺²	MnCl ₂		650			
	Nii ⁺²	-					
		NiSO ₄		730			
	Fe ⁺³	FeSO ₄		945			
	Table 4.	Direct spectro	photometri	c determin	ation		
~ .	Amount of	Amount of	Recovery	-	REP	RSD	
Sample	Copper Spiked	copper found	%	RMSEP	%	%	t-test
Tor Water	µg/mL	$\mu g/mL$		0.00022		2 0 20	2 2601
Tap Water	1.066	0.0086 1.05±0.02	- 97.7	0.00033 0.0479	9.696 4.1862	3.820 4.562	3.3681 0.8648
	1.3351	1.03 ± 0.02 1.333 ± 0.01	97.7 99.26	0.0479	4.1802	4.302 0.0757	0.8048
Pinakini	1.5551	0.2408	99.20	0.0101	3.8725	7.558	1.2336
Water	0.76	0.982±0.03	- 97.9	0.0182	2.0460	0.111	1.3054
water	0.824	1.051 ± 0.05	98.67	0.0283	5.7831	0.2693	1.4637
Milk	0.021		20.07				
(Buffalo)	-	1.216	-	0.1460	1.3990	3.4312	0.3530
Milk(Cow)	-	1.318	-	0.1657	4.9157	3.5917	0.1469
Mother Milk	-	0.4841	-	0.0686	4.7901	2.0240	0.8205
		µg/g					
Cabbage	-	17.2	-	0.0779	1.2671	2.158	1.1731
C	2.0	18.6±0.001	96.8	0.2319	4.6434	5.927	2.5153
Vegetable	-	14.76	-	0.0642	0.8438	2.0742	1.6413
Banana	8.0	21.98±0.006	96.57	0.0563	0.4423	1.2197	2.2859
Amruthapani	-	16.4	-	0.1254	6.4778	3.633	0.2370
Banana	4.0	19.55±0.004	95.8	0.1718	1.6557	0.3871	1.0878
Tomato	-	18.35	-	0.2239	6.9181	5.782	17173
	4.0	21.53 ± 0.01	96.33	0.4036	5.8121	5.500	1.6715
Wheat flour	-	15.7	-	0.0506	3.1433	1.532	1.6810
a 1	5.0	20.4±0.03	98.55	0.4040	4.1543	7.4252	0.0821
Cucumber	-	24.28	-	0.0268	1.4955	0.5268	2.2065
D' (1010)	4.0	27.11±0.001	95.86	0.1526	4.8579	1.6495	2.4825
Rice(1010)	-	14.522	-	0.2017	0.7729	3.9680	2.2105
Disc	5.0	17.7482±0.03	90.91	0.7770	4.7914	12.508	1.8041
Rice	-	21.68	-	0.1278	3.2275	2.8070	0.1855
(Masuria) Human hair	3.0	23.93±0.0001 41.2	96.96	0.1357	3.8526	2.6993	1.0136
numan nafr	-	41.2 Average of ten rep	-	0.0329	0.4409	0.38506	1.6724

 Table 3. Effect of diverse ions

Average of ten replicate determinations

		varive speenopri					
Sample	Amount of copper Spiked, µg/mL	Amount of copper found µg/mL	Recovery %	RMSEP	REP %	RSD	t - test
	μg/IIIL		R				
Tap Water	-	0.0086	-	0.00033	9.696	3.820	3.3700
1 st derivative	1.037	1.04 ± 0.01	99.4	0.0778	9.556	7.487	0.8454
nd	1.60	1.59 ± 0.04	98.8	0.0283	5.720	1.780	5.7992
2 nd derivative	0.896	0.87 ± 0.06	96.5	0.0424	2.607	4.857	1.3424
1	1.635	1.63 ± 0.03	99.4	0.0264	3.400	0.162	3.6413
3 rd derivative	1.102	1.086 ± 0.001	97.8	0.0470	9.410	4.328	1.5676
	0.792	0.781 ± 0.07	97.5	0.00712		0.913	0.9763
Pinakini	-	0.2408	-	0.0182	3.872	7.558	1.2336
water	0.781	1.022 ± 0.03	99.9	0.04127	3.359	4.040	2.1183
1 st derivative	1.16	1.384 ± 0.05	99.1	0.0800	5.618	5.780	0.5217
	0.744	0.96 ± 0.02	97.3	0.0149	0.524	1.555	1.2203
2 nd derivative	1.18	1.39 ± 0.003	97.9	0.0409	3.629	2.940	1.2370
	0.93	1.16±0.01	98.9	0	0	0	0
3 rd derivative	1.7478	1.96 ± 0.003	98.5	0.1914	3.826	9.770	1.2291
Milk(Buffalo)	-	1.216	-	0.1460	1.399	3.431	0.3530
1 st derivative	-	1.0668	-	0.4075	5.090	10.91	0.8147
2 nd derivative	-	1.0071	-	0.5240	5.724	14.86	0.6577
3 rd derivative	-	1.0654	-	0.3088	2.602	8.281	0.6492
Milk(Cow)	-	1.318	-	0.1657	4.915	3.591	0.1469
1 st derivative	-	1.2300	-	0.5835	6.559	13.55	0.0325
2 nd derivative	-	1.2281	-	0.9981	3.014	23.21	1.3550
3 rd derivative	-	1.2582	-	0.5265	6.229	11.95	0.5321
Milk(Mother)	-	0.4841	-	0.0686	4.790	2.024	0.8205
1 st derivative	-	0.4297	-	0.0535	4.259	1.779	2.1004
2 nd derivative	nd derivative -		-	0.2672	2.942	8.901	1.9454
3 rd derivative	3 rd derivative -		-	0.4747	6.256	11.95	0.3111
		µg/g					
Cabbage	-	17.2	-	0.0779	1.267	2.158	1.1731
1 st derivative	-	17.91	-	0.2465	4.524	6.552	1.4855
	2.21	19.27±0.005	99.27	0.2175	2.949	4.502	1.3681
2 nd derivative	-	18.01	-	0.3781	2.196	9.994	0.6806
	1.98	18.35±0.02	95.7	0.3612	3.621	2.941	0.3992
3 rd derivative	-	13.52	-	0.3644	0.891	12.83	1.3693
	2.14	18.70±0.04	96.7	0.3871	2.358	4.510	0.8414
Vegetable banana	-	14.76	-	0.0642	0.843		1.6413
1 st derivative	_	12.32		0.3348	2.565	11.59	0.3848
	7.84	12.52 21.67±0.001	- 95.9	0.3348	3.707	6.281	0.3848 1.4971
2 nd derivative	-	12.07		0.3293	6.287	3.664	0.0183
	8.12	22.55±0.04	- 08.6		1.807	3.697	0.0183
3 rd derivative	8.12 -	22.33±0.04 12	98.6 -	0.4677 0.0735			
5 derivative					2.793	2.915	0.6582
	7.94	22.06±0.0003	97.2	0.2782	4.126	3.780	1.0900 Contd

 Table 5. Derivative spectrophotometric determination

Contd...

Amruthapani banana	-	16.4	-	0.1254	6.477	3.633	0.2370
1 st derivative	-	13.09	-	0.3098	2.175	11.26	1.037
	3.79	19.68±0.0005	97.5	0.1978	4.408	0.416	1.2293
2 nd derivative	-	14.99	-	0.3502	5.014	11.11	1.358
	4.22	20.31±0.01	99.5	0.3309	1.745	0.260	1.120
3 rd derivative	-	21.59	-	0.1388	3.193	3.0600.7	1.155
	3.86	19.22±0.002	94.9	0.5060	2.534	12	0.5681
Tomato	-	18.35	-	0.2239	6.918	5.782	1.7173
1 st derivative	-	14.13	-	0.2068	4.220	6.967	0.6712
	3.98	21.59±0.004	96.7	0.3850	4.962	6.879	0.8615
2 nd derivative	-	23.75	-	0.3709	4.837	7.433	2.2669
	4.22	22.23±0.001	98.5	0.1383	2.157	1.313	0.8894
3 rd derivative	-	21.55	-	0.2805	1.951	6.197	0.1352
	4.25	21.44±0.0002	94.9	0.2302	3.398	3.250	0.3461
Wheat flour	-	15.7	-	0.0506	3.143	1.532	1.681
1 st derivative	-	14.85	-	0.0835	2.792	2.677	1.0528
	5.25	20.27±0.002	96.8	0.0956	1.018	1.616	1.3032
2 nd derivative	-	16.65	-	0.6531	2.398	18.68	1.7672
	4.89	19.58±0.04	94.7	0.0711	0.603	0.557	1.5477
3 rd derivative	-	16.83	-	0.1115	2.947	3.154	1.3074
	4.87	20.34±0.0005	98.9	0.333	2.576	3.462	1.3218
Cucumber	-	24.28	-	0.0268	1.495	0.526	2.2065
1 st derivative	-	17.93	-	0.2942	5.742	7.809	0.8276
	3.92	27.26±0.0019	96.7	0.4363	2.619	13.83	0.6667
2 nd derivative	-	23.21	-	0.17086	3.024	3.504	1.984
	4.24	27.15±0.05	95.2	0.0865	1.598	1.295	0.2449
3 rd derivative	-	14.02	-	0.1527	5.010	5.138	0.9028
	4.09	26.72±0.0006	94.2	0.3989	1.488	3.416	0.3052
Rice(1010)	-	14.5222	-	0.2017	0.772	3.968	2.2105
1 st derivative	-	8.4805	-	0.0595	4.471	2.004	1.445
and a second	5.00	13.280±0.001	98.5	0.4499	3.666	7.695	0.6403
2 nd derivative	-	13.7077	-	0.1770	1.810	3.689	0.8146
ard a second	5.00	17.997±0.0003	96.19	0.1118	1.962	2.098	0.5798
3 rd derivative	-	11.808	-	0.2502	4.406	6.053	1.0907
D: 04 · · · ·	5.00	16.00±0.02	95.19	0.3112	0.141	6.183	0.9409
Rice(Masuria)	-	21.68	-	0.1278	3.227	2.807	0.1855
1 st derivative	-	17.4059	-	0.1078	1.161	2.948	1.3288
and the second	3.00	20.222±0.0001	99.0	0.1547	1.859	3.282	0.8421
2 nd derivative	-	19.589	-	0.2576	3.141	6.261	1.080
ard 1 · ·	3.00	21.669±0.02	95.9	03870	6.875	8.503	0.2279
3 rd derivative	-	18.244	-	0.1483	2.601	3.870	1.0746
	3.00	20.62±0.001	97.0	0.2166	3.412	4.999	1.2175
Human Hair 1 st derivative	45.02 ³³	41.2	91.5	0.0329	0.440	0.380	1.6724
2^{nd} derivative		45.73	101.5	0.0776	1.672	1.034	0.175
3^{rd} derivative		44.59 45.59	99.0 101.2	$0.0550 \\ 0.0622$	2.849 1.899	0.949 1.004	1.880 0.9556
Juenvalive	4	43.39 erage of ten renlicate			1.099	1.004	0.9330

Average of ten replicate Determinations

Pharmaceuticals	Form	Certified value mg / tablet	Found mg /tablet	Recovery %	RMSEP	REP %	RSD	$t- ext{test}$
Supradyne	CuSO ₄ .	3.39	3.41	100.6	0.0459	3.2319	1.346	3.8511
1 st derivative	$5H_2O$		3.57	105.3	0.0800	3.2740	2.2405	2.2925
2 nd derivative			3.78	111	0.4535	3.9085	10.910	0.6177
3 rd derivative			3.10	91.3	0.2079	2.7644	6.7150	2.1522
MULTIRICH	Copper	50	53	106	0.4780	2.8202	9.684	2.4166
1 st derivative			48.86	97.72	0.3005	4.4118	7.873	1.1470
2 nd derivative			49.47	98.94	0.2348	2.3565	5.634	0.4754
3 rd derivative			52.07	104.14	0.3959	4.2369	10.032	1.5487
MULTIVITE	CuSO ₄ .	0.1	0.108	108	0.1420	0.0358	3.749	2.5074
1 st derivative	$5H_2O$		0.092	92	0.1459	2.1845	4.531	1.3329
2 nd derivative			0.101	101	0.1642	3.0030	3.541	0.3624
3 rd derivative			0.105	105	0.3002	4.9610	7.4187	1.0059
GBION	Copper	2.0	1.36	68.0	0.5284	0.0679	11.074	0.4895
1 st derivative			0.8623	43.1	0.1170	2.2943	3.8440	0.8891
2 nd derivative			0.8922	44.6	0.2831	4.1110	9.0652	0.1854
3 rd derivative			0.954	47.7	0.0872	2.4457	2.6300	1.5883
NEXBLEND	CuO	0.5	0.40	80	0.3149	4.5997	8.0009	1.8416
1 st derivative		mg/15 mL	0.3047	60.94	0.074	3.4494	2.4279	0.1666
2 nd derivative			0.3542	70.84	0.1780	2.1879	1.5519	4.6484
3 rd derivative			0.3148	62.96	0.0872	2.4457	2.6306	1.5883

Table 6. Determination of copper in pharmaceutical preparations

The infants not given breast milk, fed with buffalo's milk and cow's milk may have to been increased the bioavailability of copper and is associated with the acute phase reactions of number of diseased states, is always almost accompanied by hypercaeruloplasminaemia⁴⁵. The content of copper determined in the human hair is 41.2-45.4 μ g/g. It is good coincidence with the values reported in the literature³³.

The quantity of copper(II) in the common man dietaries like cabbage (13.5-18 μ g/g), vegetable banana (12-14.7 μ g/g), Amruthapani banana (13.1-21.5 μ g/g), tomato (14.1-23.7 μ g/g), wheat flour (14.9-16.9 μ g/g), cucumber (14-24.2 μ g/g), rice 1010 (8.5-14.5 μ g/g), rice masuria (17.4-19.6 μ g/g), were determined by this method, it was widely believed that most ostensibly healthy individuals consumed diets are to provide 2000 μ g of copper/day⁴⁶. So the above diets are suggestive as good dietary for healthy individuals to supplement the require copper.

The estimation of copper in the pharmaceutical samples shows the efficiency of the method and sensitivity of the reagent than the methods reported in the literature³³⁻³⁸. However, in the case of GBion tablet determined value of Cu(II) is very low than the certified value, in all other cases the certified and the determined values are in good agreement hence, it was concluded the GBion tablets [Cotec health care pvt.ltd Uttaranchal. India.] Maintain substantial values than the certified.

The proposed spectrophotometric method is more selective. The standard addition method was used to determine Cu(II) in real samples, because of the incomplete release due to the interfering effects. The relative standard deviations representing the reproducibility

and low detection limits in the determinations. The reagent used is highly specific. Hitherto no information in the literature used for the trace metal analysis. The proposed method shows the possibility of determination of ultra trace levels without the use of sophisticated instrumentation.

Acknowledgement

The authors are very thankful to Sri Anam Vivekananda Reddy Garu MLA Secretary and correspondent V. R. Colleges and High school committee, for providing facilities to carry out the proposed work and day to day inspiring encouragement.

References

- 1. Duffus J H, Toxicologia Ambiential, Omega, Barcelona, 1983.
- 2. Kosonen T, Uriu-Hare J Y, Clegg M S, Keen C L and Rucker R B, *Bio Chem J.*, 1997, 327, 283.
- 3. Louma S N, Sci., Total Environ., 1983, 1, 28.
- 4. Kumar A, Hussain M F, Setake M and Puri D K, J Chin Chem Soc., 1984, 31, 55.
- 5. Lin J L and Cheng L F, J Chin Chem Soc., 1984, **31**, 297.
- 6. Lin J L and Satake M, J Chin Chem Soc., 1985, **32**, 105.
- 7. Chao M S and Chung C S, *J Chin Chem Soc.*, 1989, **36**, 301.
- 8. Patty F A, Industrial Hygiene and Toxicology, Inter Science Publishers New York, 1962, **2**, 1033.
- 9. Shan Z F, Stud Trace Elements Health, 2006, 23(3), 66.
- 10. Cao H L, Stud Trace Elements Health, 2001, 18, 73.
- 11. Lau O W and Ho S Y, Anal Chim Acta, 1993, 280, 269-277.
- 12. Rigin V, Anal Chim Acta, 1993, 283, 895.
- 13. She Z and Wang Z, *Fensi Huaxue.*, 1993, **21**, 1313-1316.
- 14. Xie N, Huang C and Fu H D, *Sepu.*, 1990, **8**(2), 114.
- 15. She Z, Nie F and Chen Y, *Fensi Huaxane.*, 1991, **19**, 1272.
- 16. Qiao Z K, Hou Q Z and Lihua Jianyan, Hvaxue Fence, 1995, 31(2), 105.
- 17. Sun P P and Wu B C, *Fenxi Shiyanshi*, 1994, **13(5)**, 11.
- Captain Gareia F, Captain Vallvey L F, Gines Fernandez D and Espinosa H P, *Quim Anal.*, 1988, 7(4), 451.
- 19. Noroles A, Valladares L and Fresenius Z, Anal Chem., 1989, 334(1), 53-55.
- 20. Molina F, Fernandez G D, Bosque Sendra M J B and Espinosa P, *J Pharm Biomed Anal.*, 1988, **6(6-8)**, 1099.
- 21. Karayannis M I, Talanta, 1994, 41(10), 1645-1649.
- 22. Shinde V M and Khopkar S M, Anal Chem., 1969, 41(2), 342.
- 23. Terashima K and Tomioka H, Jap Anal., 1969, 18(8), 998.
- 24. Katiyar G S and Haldar B C, Indian J Chem Soc., 1984, 61(4), 353-355.
- 25. Ramanjaneyulu G, Ravendra Reddy P, Krishna Reddy V and Sreenivasulu Reddy T, *The Open Anal Chem J.*, 2008, **2**, 78-82.
- 26. Ghazy S E and Mostafa G A E, *Egypt J Chem.*, 2002, **45**, 855.
- 27. Campaigne E, Bosin T and Neiss E S, *J Med Chem.*, 1967, **10**, 270-271.
- 28. A.I Vogel, the text book of quantitative analysis Longman, Grout Pub London U.K, 1989.
- 29. Gofttschalk, Zeit Anal Chem., 1959, 167, 342.
- 30. Gomori G, Methods in Enzymology, 1955, 1, 141.
- 31. Ghazy S E, EI-Shazly R M, EI-Shahawi M S, AI-Hazmi G A A and EI.Asmy A A, *J Iranian Chem Soc.*, 2006, **3**(2), 142-150.

- 32. Rekha D, Suvardhan K, Suresh Kumar K, Reddyprasad P, Jayaraj B and Chiranjeevi P, *J Serb Chem Soc.*, 2007, **72(3)**, 299-310.
- 33. Anant P Argekar and Ashok K Shetty, Anal Sci., 1996, 12, 255-258.
- 34. Mandalin Mathew and Narayana B, J Sci Ind Res., 2007, 66, 28-31.
- 35. Park C I, Kim H S and Cha K W, Bull Korean Chem Soc., 1999, 20(3), 352-354.
- 36. Qing-Zhouzhai, Bull Chem Soc Ethiop., 2009, 23(3), 327-335.
- 37. Ortha Turkoglu and Mostafa Soylak, J Chin Chem Soc., 2005, 52(3), 575-579.
- 38. Melisew Tadele Alula, Abdel-Maaboud I Mohamed and Adnan A Bekhit, *Thai J Pharm Sci.*, 2010, **34**, 93-106.
- 39. Guidelines for drinking water quality 1993, 2nd Ed., v1.WHO Geneva.
- 40. Washington D C, National Academy of Science, 1977, 117.
- 41. Prasad P M N and Reddy Y V R, Electronic news: Letter on renuwal energy and environment, 2010, **7**(1), 9-16.
- 42. Turnlund J R, Keyes W R, Anderson H L and Accord L L, *Am J Clin Nutr.*, 1989, **49**, 870-878.
- 43. Minor and Trace elements in breast milk 1989, WHO 9, Geneva.
- 44. Salmenpera.L, Perheentupa J and Siimes M A, Am J Clinical Nutr., 1986, 43, 251-257.
- 45. Under Wood E J, Trace Elements in Human and Animal Nutrition 4th Edition Academic Press Newyork, 1977, 56-108.
- 46. National Research Council. Recommended Dietary Allowances 9th; Washington DC, National Academy of Science, 1980.