RESEARCH ARTICLE

Telluride Catalyzed Pinacolization of Aromatic Aldehydes

SAPANA GARG, RIMPI and K.K.VERMA*

Department of Chemistry, Maharshi Dayanand University, Rohtak-124001, India vermakk123@rediffmail.com

Received 15 September 2012 / Accepted 20 October 2012

Abstract: The coupling reaction of aldehyde leading to pinacols was carried out by using disodium telluride and diaryl telluride in presence of potassium hydroxide in methanol solution at room temperature. These tellurides catalyze the pinacolization reactions to form α -glycols in considerable yield. All the products have been identified by comparison of their properties with those of authentic samples. It has been observed that disodium telluride is better catalyst as compare to diaryl tellurides and bis (*p*-methoxyphenyl) telluride is better catalyst as compared to bis(hydroxyaryl) tellurides.

Keywords: Tellurium, Pinacolization, Aromatic aldehydes

Introduction

1, 2 Diols are very useful synthons for a variety of organic synthesis¹⁻². They can be used as intermediates for the preparation of ketones and alkenes. More importantly, the pinacol coupling has been applied to the synthesis of biologically active natural compounds³. The reductive coupling of carbonyl compounds is an important method for the formation of 1, 2 diols. A number of types of reagents such Mg-MgI₂⁴, Zn-ZnCl₂⁵, a number of transition metals⁶, lanthanides⁶, actinides⁶, Ti(II) and Ti(III) reagents have received much attention⁷⁻⁸. Olefin formation reaction is known to compete with these reagents⁹

Pinacolization of aromatic aldehydes using Zn/montmorillonite K 10-ZnCl₂ in aqueous THF under ultrasound¹⁰, vanadium-catalysed¹¹, Te-KOH¹² and Al-KOH¹³ has been reported. Tellurides find use in organic synthesis, both as a reagent for reductions¹⁴ and as a source of Tellurium in the synthesis of organotellurium compounds¹⁵. We herein report the results of tellurides catalyzed pinacol coupling reaction of aromatic aldehydes.

Experimental

Aldehydes were purified by distillation prior to use. Infrared spectra were recorded in KBr pellets using a Bruker Tensor 27 FT-IR Spectrophotometer. ¹H NMR spectra were recorded in DMSO-d₆ on a Bruker AVANCE II spectrometer operating at 400 MHz. TLC plates of silica gel-G was used to monitor the reactions. All products are known compounds and were characterized by IR, ¹H NMR spectral studies and identified by comparison of their properties with those of authentic samples.

Preparation of disodium telluride¹⁶

Hydrazine hydrate 80% (0.50 mL, 7.1 mmol) was added drop wise using a syringe to stirred mixture of finely grounded Te (0.64 g, 5 mmol) and powdered NaOH (0.40 g, 10 mmol) in DMF (10 mL) at 50-60 $^{\circ}$ C stirred for 3 h, filtered and dried giving the white crystalline telluride, yield 0.688 g.

Preparation of bis(p-anisyl) telluride¹⁷

Anisyltellurium dichloride (8.3 g, 0.02 mol) suspended in EtOH/H₂O (150:15 mL) was heated under reflux and hydrazine (3.2 g, 0.1 mol) was added drop wise. Vigorous evolution of N₂ was observed. Addition of hydrazine was stopped when no further evolution of N₂ was observed. The mixture was then poured into H₂O (700 mL) and extracted with ether (2×300 mL). The extracts were washed with H₂O, dried and evaporated, giving the telluride in 6.2 g yield, m.p. 53-54 °C.

Preparation of bis(4-hydroxyphenyl) telluride¹⁷

Bis(*p*-hydroxyphenyl)tellurium dichloride (7.73 g, 0.02 mol) suspended in EtOH/H₂O (150:15 mL) was heated under reflux and hydrazine (3.2 g, 0.1 mol) was added drop wise (vigorous evolution of N₂). When further addition of hydrazine caused no evolution of N₂, the mixture is poured into H₂O (700 mL) and extracted with ether (2×300 mL). The extracts were washed with H₂O, dried and evaporated, giving the telluride in 5.9 g yield, m.p. 148-150 °C.

Preparation of di-3-methyl-4-hydroxyphenyl telluride¹⁷

Bis(3-methyl-4-hydroxyphenyl)tellurium dichloride (8.3 g, 0.02 mol) suspended in EtOH/H₂O (150:15 mL) was heated under reflux and hydrazine (3.2 g, 0.1 mol) was added drop wise till no further evolution of N₂. The mixture was poured into H₂O (700 mL) and extracted with ether (2×300 mL). The extracts were washed with H₂O, dried and evaporated giving telluride 6.4 g, m.p. 143-144 °C.

General procedure for Pinacolization of aromatic aldehydes using telluride (Na_2Te or Ar_2Te) - KOH as catalyst

Aldehyde (5 mmol) was dissolved in methanol (7.5 mL), 10 mmol of telluride (Na₂Te or Ar₂Te) and KOH (1.40 g, 25 mmol) were added and the reaction mixture was stirred. The reaction became vigorous immediately after the addition of KOH. The reaction mixture was filtered to remove the catalyst. 50 mL water was added to the filtrate. A solid precipitated out which was filtered. Some of the diols were obtained by extracting the filtrate with CH₂CI₂ (3×20 mL), drying with anhydrous Na₂SO₄ and evaporating the solvent.

Spectral data

1, 2-Diphenyl-1, 2-ethanediol (1) (DMSO, 400MHz) ¹H NMR: δ 2.50(s, 2H, OH), 4.60(s, dl) and 5.20(s, meso) (2H, PhCH-), 6.70-7.29 (m, 10H, Ar) IR (KBr): 3498, 3394, 1041, 1012 cm⁻¹.

1, 2-Bis (4-chlorophenyl)-1, 2-ethanediol (**2**) (DMSO, 400MHz) ¹H NMR: δ 2.49(s, 2H, OH), 4.57(s, dl) and 5.17(s, meso) (2H, PhCH-), 6.72-7.17(m, 8H, Ar). IR (KBr): 3499, 3394, 1042 cm⁻¹.

1, 2-Bis (2, 4-dichlorophenyl)-1, 2-ethanediol (**3**) (DMSO, 400MHz) ¹H NMR: δ 2.51(s, 2H, OH), 4.56(s, dl) and 5.02(s, meso) (2H, PhCH-), 7.04-7.18 (m, 8H, Ar). IR (KBr): 3498, 3389, 1196, 1041, 775, 745 cm⁻¹.

1, 2-Bis (2, 6-dichlorophenyl)-1, 2-ethanediol (**4**) (DMSO, 400MHz) ¹H NMR: δ 2.70(s, 2H, OH), 4.62 (s, dl) and 5.09(s, meso) (2H, PhCH-), 7.09-7.25(m, 6H, Ar). IR (KBr): 3498, 3394, 1042, 1010, 776, 747 cm⁻¹.

1, 2-Bis (3-chlorophenyl)-1, 2-ethanediol (**5**) (DMSO, 400MHz) ¹H NMR: δ 2.39(s, 2H, OH), 4.72(s, 2H, PhCH-), 6.37-7.19(m, 8H, Ar) IR (KBr): 3499, 1196, 1023, 747 cm⁻¹.

1, 2-Bis (2-chlorophenyl)-1, 2-ethanediol (**6**) (DMSO, 400MHz) ¹H NMR: δ 3.05(s, 2H, OH), 4.72(s, 2H, PhCH-), 6.37-7.19(m, 8H, Ar) IR (KBr): 3498, 3394, 1197, 1042, 776 cm⁻¹.

1, 2-Bis (4-bromophenyl)-1, 2-ethanediol (7) (DMSO,400MHz) ¹H NMR: δ 2.99(s, 2H, OH), 4.69(s, dl), and 5.63(s, meso)(2H,PhCH-),6.77-7.26(m,8H,Ar). IR (KBr): 3498, 3394, 1195, 1042, 698 cm⁻¹.

1, 2-Bis (2-bromophenyl)-1, 2-ethanediol (**8**) (DMSO,400MHz) ¹H NMR: δ 3.12(s, 2H, OH), 4.69(s, dl) and 5.68(s, meso)(2H,PhH-),6.85-7.45(m,8H,Ar). IR (KBr): 3498, 3394, 1195, 1041, 698 cm⁻¹.

1, 2-Bis (4-methoxyphenyl)-1,2-ethanediol (9) (DMSO,400MHz) ¹H NMR: δ 2.40(s, 2H, OH), 3.76(s, 3H, OCH₃) 4.52(s, dl) and 4.60(s, meso) (2H, PhCH-), 6.83-7.23(m, 8H, Ar). IR (KBr): 3350, 1280, 1156, 1039, 1000 cm⁻¹.

1, 2-Bis (4-methylphenyl)-1, 2-ethanediol (**10**) (DMSO, 400MHz) ¹H NMR: δ 2.26(s, 3H, OH), 3.00(s, 3H, OH) 4.68(s, dl) and 5.39(s, meso) (2H, PhCH-), 6.70-7.21(m, 8H, Ar). IR (KBr): 3498, 3394, 1194, 1041 cm⁻¹.

1, 2-Bis (3-methylphenyl)-1, 2-ethanediol (**11**) (DMSO, 400MHz) ¹H NMR: δ 2.24(s, 3H, OH), 4.69(s, dl) and 5.39(s, meso) (2H, PhCH-), 6.67-7.21(m, 8H, Ar). IR (KBr): 3498, 3393, 1196, 1023 cm⁻¹.

1, 2-Bis (2-methylphenyl)-1, 2-ethanediol (**12**) (DMSO,400MHz) ¹H NMR: δ 2.25(s, 3H, OH), 3.4(s, 2H, OH), 4.65(s, dl) and 5.65(s, meso) (2H, PhCH-), 6.58-7.21(m, 8H, Ar). IR (KBr): 3498, 3387, 1174, 1107 cm⁻¹.

1, 2-Bis (4-hydroxyphenyl)-1, 2-ethanediol (**13**) (DMSO, 400MHz) ¹H NMR: δ 2.10(s, 2H, OH), 2.52(s, 2H, PhOH), 4.57(s, dl) and 4.98(s, meso) (2H, PhCH-), 7.07-7.88(m, 8H, Ar). IR (KBr): 3366, 1247, 1172, 1033, 1006 cm⁻¹.

Results and Discussion

The coupling of aromatic aldehydes to yield the pinacoles can be represented by following equation: Na_2Tc / R_2Te ,

2ArCHO $\xrightarrow{\text{Na}_2\text{Tc} / \text{R}_2\text{Te},}$ Ar-HC(OH)-(OH)HC-Ar

(Where R is 4-methoxyphenyl, 4-hydroxyphenyl and 3-methoxy-4-hydroxyphenyl)

As shown in Tables 1 and 2, the coupling of some aromatic aldehydes gives pinacols in good yield in the presence of R_2 Te/Na₂Te-KOH in methanol. It is reported that the reaction proceed *via* a single electron transfer mechanism with Te powder supplying the electrons¹¹. In case of R_2 Te/Na₂Te-KOH the probable mechanism is:

Figure. Probable mechanism of telluride catalyzed pinacolization

-	J 1 U	2	
Aldehyde	Reaction time [*] , min	Yield ^{**} , %	+/-: meso***
C ₆ H ₅ CHO	30	75	55:45
4-ClC ₆ H ₄ CHO	25	79	56:44
2, 4-(Cl) ₂ C ₆ H ₃ CHO	20	75	53:47
2, 6-(Cl) ₂ C ₆ H ₃ CHO	15	85	53:47
3-ClC ₆ H ₄ CHO	25	80	$(-)^{\#}$
2-ClC ₆ H ₄ CHO	25	82	$(-)^{\#}$
4-BrC ₆ H ₄ CHO	25	76	53:47
2-BrC ₆ H ₄ CHO	25	82	36:64
4-CH ₃ OC ₆ H ₄ CHO	40	70	83:17
4-CH ₃ C ₆ H ₄ CHO	35	72	41:59
3-CH ₃ C ₆ H ₄ CHO	35	75	37:63
2-CH ₃ C ₆ H ₄ CHO	35	79	41:59
4-OHC ₆ H ₄ CHO	35	79	41:59

Table 1. Na₂Te-KOH catalyzed coupling of aromatic aldehyde in methanol.

^{*}Monitored by complete disappearance of starting material using TLC. ^{**}Spectral data (IR, ¹H NMR) are in agreement with the structure. ^{***}Ratio of +/- meso as calculated by ¹H NMR. [#] dl or meso was not determined. No alcohol or carboxylic acid (due to competing cannizaro reaction) was observed to have been formed in these reactions

	R_2Te R=4-methoxyphenyl		R ₂ Te R=4-hydroxyphenyl		R ₂ Te R=3-methyl-4- hydroxyphenyl Reaction Xield**	
Aldenyde	Reaction Vield**					
	Time [*] , min	%	Time [*] , min	%	Time [*] , min	%
C ₆ H ₅ CHO	35	65	38	70	40	70
4-ClC ₆ H ₄ CHO	30	80	35	75	35	75
2,4-(Cl) ₂ C ₆ H ₃ CHO	25	85	30	69	30	80
2,6-(Cl) ₂ C ₆ H ₃ CHO	25	85	30	75	30	82
3-ClC ₆ H ₄ CHO	30	75	35	78	40	74
2-ClC ₆ H ₄ CHO	30	78	35	85	40	59
4-BrC ₆ H ₄ CHO	30	84	35	83	40	63
2-BrC ₆ H ₄ CHO	30	73	35	72	40	70
4-CH ₃ OC ₆ H ₄ CHO	40	78	45	75	50	72
4-CH ₃ C ₆ H ₄ CHO	35	81	40	80	45	70
3-CH ₃ C ₆ H ₄ CHO	35	60	40	70	45	65
2-CH ₃ C ₆ H ₄ CHO	35	72	40	70	50	68
4-OHC ₆ H ₄ CHO	45	70	45	75	55	75
C ₆ H ₅ CHO	35	65	38	70	40	70

Table 2. R₂Te-KOH catalysed of aromatic aldehydes in methanol

^{*}Monitored by complete disappearance of starting material using TLC, ^{**}Spectral data (IR, ¹H NMR) are in agreement with the structure

 Te^{2-} donates electron to the ketone to generate a radical anion, which dimerizes, yielding the vicinal diol with both hydroxyl group deprotonated. Addition of water gives the diol. KOH makes these tellurides more active. The effect of the substituent of the aromatic ring on the reaction time is clear. The aromatic aldehydes with electron donating group show less reactivity. In contrast, electron withdrawing group in the aromatic ring of aromatic

aldehydes increase the reactivity. The steric hindrance around the carbonyl group inhibits the coupling reaction. When aromatic ketones such as acetophenone and p-chloroacetophenone were used as a substrate, no pinacol was obtained. The effect of the substituent of the aromatic ring on the dl/meso ratio is not clear.

Conclusion

The coupling reaction of aldehyde leading to pinacols was carried out by using disodium telluride and diaryl tellurides in presence of potassium hydroxide in methanol solution at room temperature. These tellurides catalyze the pinacolization reactions to form α -glycols in considerable yield. It has been observed that disodium telluride is better catalyst as compared to diaryl tellurides and bis(*p*-methoxyphenyl) telluride is better catalyst as compared to bis(hydroxyaryl) tellurides.

Acknowledgement

The authors are thankful to Maharshi Dayanand University, Rohtak for providing necessary facilities. One of the authors (Rimpi) is thankful to CSIR, New Delhi for providing SRF.

References

- 1. Ghribi A, Alexakis A and Normant J F, Tetrahedron Lett., 1984, 25, 3083.
- 2. Nicolaou K C, Yang Z and Liu J J, *Nature*, 1994, **367(6464)**, 630-634.
- 3. Ghribi A, Alexakis A and Normant J F, Tetrahedron Lett., 1984, 25, 3075.
- 4. Gomberg M and Bachmann W E, J Am Chem Soc., 1927, 49, 236.
- 5. Tanka K, Kishigami S and Toda F, J Org Chem., 1990, 55, 2981.
- 6. Kahn B E and Rieke R D, *Chem Rev.*, 1988, **88**,733.
- 7. Handa Y and Inanaga J, *Tetrahedron Lett.*, 1987, **28(46)**, 5717-5718.
- 8. Furstner A, Csuk R, Rohrer C and Weidmann H, *J Chem Soc Perkin Trans I*, 1988, 1729-1734.
- 9. Mc Murry J E, Acc Chem Res., 1983, **16**, 405-411.
- 10. Hongjun Z, Li Jitai, Bian Yanjiang, and Li Tongshuang, Chem J Internet, 2003, 5, 1,
- 11. Xiaoliang Xu and Toshikazu Hirao, J Org Chem., 2005, 70(21), 8594-8596.
- 12. Khan R H, Mathur R K and Ghosh A C, Synth Commun., 1997, 27(13), 2193-2196.
- 13. Khurana J M and Sehgal A, J Chem Soc Chem Commun., 1994, 5, 571.
- 14 Suzuki H, Manabe H, Kawaguchi T and Inouye M, Bull Chem Soc Jpn., 1987, 60, 771.
- 15. Rheinboldt H and Vicentini G, Chem Ber., 1956, 89, 624.
- 16. Lue P, Chen B, Yu X, Chen J and Zhou X, Synth Commun., 1986, 16, 1849.
- 17. Bergman J, *Tetrahedron*, 1972, **28**, 3323.

512