RESEARCH ARTICLE

Quinoline Based 2-Pyrazoline Derivatives Synthetic and Pharmacological Approach

KUMAR SANJEEV S. LAMANI^{*} and OBLENNAVAR KOTRESH

Department of Chemistry, C. S. Bembalagi Arts, S. M. R. Palaresha Science and G. L. Rathi Commerce College, Ramdurg-591123, India

san_lamani09@rediffmail.com

Received 5 March 2013 / Accepted 30 April 2013

Abstract A series of 2-pyrazolines has been synthesized by reaction with quinoline and acetyl sydnone derivatives as the starting materials. Structures of the synthesized compounds were characterized by spectroscopic data and CHN analyses. The antimicrobial studies of the synthesized compounds have shown promising activities towards the fungal strains viz., *A niger* and *A. sereus* and moderate activities of towards the bacterial strains viz., *E. coli* and *B. subtilis*.

Keywords 2-pyrazoline. Quinoline. Acetyl sydnone. Antimicrobial Studies

Introduction

Pyrazolines and related five membered heterocycles have attracted the attention of researchers in recent years¹⁻⁴. Several pyrazoline derivatives have been found to possess promising biological activities, which has stimulated research activity in this field. Their prominent effects are *e.g.*, antimicrobial⁵ central nervous system⁶ and immunosuppressive⁷ activities. After the pioneering work of Fischer and Knövenagel in the late nineteenth century⁸ the reaction of α , β -unsaturated aldehydes and ketones with hydrazines became one of the most popular methods for the preparation of 2-pyrazolines⁹⁻³⁶.

In continuation of our work with pharmacologically active compounds we report herein a novel route of synthesis of 2-pyrazoline using the two biologically active moieties of quinoline and acetyl sydnone. It was interesting in knowing the varying biological behavior of the synthesized compounds. An attempt has been carried in evaluation of the synthesized compounds towards the structural elucidation and antimicrobial activities.

Experimental

Melting points were determined on an Electro-thermal AZ 9000 3MK4 apparatus and were uncorrected. The thin layer chromatography (TLC, Rf values) was performed on Al_2O_3 60 plates F254 or silica gel plates (Merck, 0.2 mm thick) using mobile phase benzene/ethanol-2:0.5, respectively, benzene/ethanol-4:2, and visualization was effected with ultraviolet light. IR spectra were recorded on a Specord 71 IR spectrophotometer as potassium bromide discs. All NMR spectra were recorded on a Bruker Avance DRX 250 spectrometer operating at

250.13 MHz for ¹H NMR. Chemical shifts were expressed relative to tetramethylsilane (TMS) and were reported as d (ppm). The measurements were carried out at ambient temperature (300 K). The microanalyses for C, H, N and S were performed on PerkinElmer elemental analyzer.

General procedure for the synthesis (Compounds 1a-1h)

Compounds **1a-1h** (Scheme 1) were prepared as follows: *m/p*-acetyl phenyl sydnone (2.0 g, 0.01 mol) was suspended in sodium hydroxide solution (0.5 g) in water and ethanol (5 mL) and 2-mercaptoquinoline-3-carbaldehyde (1.89 g, 0.01 mol) was added to it. The reaction mixture was stirred for 30 minutes at room temperature. The precipitate formed was immediately collected and washed thoroughly with water. The solid obtained was dried and crystallized using DMF. The same procedure is used for the synthesis of 3-[3'-(2"-chloroquinoline-1"-oxo-2"-propene-1"-yl)] phenylsydnone and other derivatives (Table 1 and 2).

 $la R'=Cl, R''=H, lb R'=SH, R''=H, lc R'=Cl, R''=OCH_3 ld R'=SH, R''=OCH_3, le R'=Cl, R''=OH, lf R'=SH, R''=OH, lg R'=Cl, R''=NO_2$

Table 1. Physical properties of compounds 1a – 1h (Para isomer)								
Compound	R′	R″	M.P	Yield	Mol. Form	Eleme	ntal anal	ysis %
Code			${}^{0}\mathbf{C}$	%		Found (Calc)		c)
						С	Η	Ν
1a	Cl	Н	214-15	88	C ₂₀ H ₁₂ O ₃ N ₃ Cl	63.58	3.17	11.12
						(63.55)	(3.19)	(11.14)
1b	SH	Н	207-08	78	C ₂₀ H ₁₃ O ₃ N ₃ S	64.00	3.46	11.20
						(64.02)	(3.45)	(11.21)
1c	Cl	OCH_3	193-94	66	$C_{21}H_{14}O_4N_3Cl$	61.84	3.43	10.30
						(61.89)	(3.48)	(10.32)
1d	SH	OCH_3	211-12	69	$C_{21}H_{15}O_4 N_3S$	62.22	3.70	10.37
						(62.24)	(3.71)	(10.38)
1e	Cl	OH	201-02	71	$C_{20}H_{12}O_4N_3Cl$	60.99	3.04	10.67
						(59.98)	(3.06)	(10.68)
1f	SH	OH	198-99	82	$C_{20}H_{13}O_4 N_3S$	61.38	3.32	10.74
						(61.40)	(3.33)	(10.75)
1g	Cl	NO_2	215-16	68	$C_{20}H_{11}O_5N_4Cl$	56.81	2.60	13.25
						(56.84)	(2.63)	(13.27)
1h	SH	NO_2	222-23	77	$C_{20}H_{12}O_4N_4S$	57.14	2.85	13.33
		_				(57.16)	(2.87)	(13.35)

Scheme 1. Synthesis of compounds 1a – 1h

		•	-		-			
Compound Code	R′	R″	M.P ⁰ C	Yield %	Mol. Form	Elem F C	ental anal ound (Ca H	ysis % lc) N
1a	Cl	Н	202-03	85	C ₂₀ H ₁₂ O ₃ N ₃ Cl	63.58	3.17	11.12
					- 20 12 - 5 - 5 -	(63.55) 64.00	(3.19)	(11.14) 11.20
1b	SH	Η	198-99	71	$C_{20}H_{13}O_3N_3 S$	(64.02)	(3.45)	(11.21)
1c	Cl	OCH₂	201-02	69	CarHuO/NaCl	61.84	3.43	10.30
					-2114 - 43	(61.89)	(3.48)	(10.32)
1d	SH	OCH ₃	223-24	62	$C_{21}H_{15}O_4N_3S$	(62.24)	(3.71)	(10.37)
10	Cl	ОЦ	106.07	70	$\begin{array}{cccc} C_{20}H_{12}O_4N_3Cl & \begin{array}{c} 60.99 & 3\\ (59.98) & (3)\\ 61.28 & 2\end{array} \end{array}$	60.99	3.04	10.67
Ie	CI	ОП	190-97	/0		(3.06)	(10.68)	
1f	SH	OH	204-05	88	$C_{20}H_{12}O_4 N_2S$	61.38	3.32	10.74
		02011304130	(61.40)	(3.33)	(10.75)			
1g	Cl	NO_2	228-29	62	C20H11O5N4Cl	56.81	2.60	13.25
-8	51	2	/		20 11 - 5 - 4 -	(56.84)	(2.63)	(13.27)
1h	SH	NO_2	206-07	77	$C_{20}H_{12}O_4N_4S$	57.14	2.85	13.33
						(57.16)	(2.87)	(13.35)

 Table 2 Physical Properties of compounds 1a - 1h (Meta isomer)

3-[3'-(2"-Chloroquinoline-1"-oxo-2"-propene-1"-yl)] phenylsydnone (1a)

Yield 88%; mp 214-15 0 C, re-crystallized with ethanol; IR (KBr) cm⁻¹ 3111, 1732, 1654. ¹H NMR (DMSO-d6) 7.3 (s, 1H, C4 proton of sydnone ring), 7.5 (s, 1H, C4 proton of sydnone ring), 7.1-8.4 (m, 9H, Ar-H).

3-[3'-(2"-Mercaptoquinoline-1"-oxo-2"-propene-1"-yl)] phenylsydnone (**2a**) Yield 78%; mp 207-08 ^oC, re-crystallized with ethanol; IR (KBr) cm⁻¹ 3113, 1740, 1660. ¹H NMR (DMSO-d6) 7.3 (s, 1H, C4 proton of sydnone ring), 3.1 (s, 1H, SH Proton), 7.4 (s, 1H, C4 proton of sydnone ring), 7.2-8.3 (m, 9H, Ar-H).

[3'-(2"-Chloro-7"-methoxyquinoline-1"-oxo-2"-propene-1"-yl)] phenylsydnone (**3a**) Yield 66%; mp 193-94 0 C, re-crystallized with ethanol; IR (KBr) cm⁻¹ 3112, 1741, 1646. ¹H NMR (DMSO-d6) 7.3 (s, 1H, C4 proton of sydnone ring), 3.74 (3H, *s*, -OCH₃), 7.2 (s, 1H, C4 proton of sydnone ring), 7.2-8.4 (m, 9H, Ar-H).

3-[3'-(2"-Mercapto-7"-methoxyquinoline-1"-oxo-2"-propene-1"-yl)] phenylsydnone (**4a**) Yield 69%; mp 211-12 0 C, re-crystallized with ethanol; IR (KBr) cm⁻¹ 3115, 1744, 1651. ¹H NMR (DMSO-d6) 7.3 (s, 1H, C4 proton of sydnone ring), 2.8 (s, 1H, SH Proton), 3.75 (3H, *s*, -OCH₃), 7.1 (s, 1H, C4 proton of sydnone ring), 7.1-8.2 (m, 9H, Ar-H).

3-[3'-(2"-Chloro-7"-hydroxyquinoline-1"-oxo-2"-propene-1"-yl)] phenylsydnone (**5a**) Yield 71%; mp 201-02 ⁰C, re-crystallized with ethanol; IR (KBr) cm⁻¹ 3125, 1742, 1661. ¹H NMR (DMSO-d6) 7.2 (s, 1H, C4 proton of sydnone ring), 7.3 (s, 1H, C4 proton of sydnone ring), 7.0-8.3 (m, 9H, Ar-H), 13.3 (1H, s, OH, D₂O exchanged).

3-[3'-(2"-Mercapto-7"-hydroxyquinoline-1"-oxo-2"-propene-1"-yl)] phenylsydnone (6a) Yield 82%; mp 198-99 ^oC, re-crystallized with ethanol; IR (KBr) cm⁻¹ 3122, 1735, 1659. ¹H NMR (DMSO-d6) 7.5 (s, 1H, C4 proton of sydnone ring), 3.0 (s, 1H, SH Proton), 7.2 (s, 1H, C4 proton of sydnone ring), 7.2-8.5 (m, 9H, Ar-H), 13.5 (1H, s, OH, D₂O exchanged).

3-[3'-(2"-Chloro-7"-nitroquinoline-1"-oxo-2"-propene-1"-yl)] phenylsydnone (7a)

Yield 68%; mp 215-16 0 C, re-crystallized with ethanol; IR (KBr) cm⁻¹ 3108, 1732, 1660. ¹H NMR (DMSO-d6) 7.4 (s, 1H, C4 proton of sydnone ring), 7.3 (s, 1H, C4 proton of sydnone ring), 7.1-8.2 (m, 9H, Ar-H).

3-[3'-(2"-Mercapto-7"-nitroquinoline-1"-oxo-2"-propene-1"-yl)] phenylsydnone (8a)

Yield 77%; mp 222-23 0 C, re-crystallized with ethanol; IR (KBr) cm⁻¹ 3110, 1730, 1658. ¹H NMR (DMSO-d6) 7.2 (s, 1H, C4 proton of sydnone ring), 2.9 (s, 1H, SH Proton), 7.0 (s, 1H, C4 proton of sydnone ring), 7.2-8.4 (m, 9H, Ar-H).

General procedure for the synthesis (Compounds 2a-2h)

Compounds **2a-2h** (Scheme 2) was prepared by a mixture of 3-aryl-[4'-(3"-quinoline-1"oxo-2"-propen-1"-yl)]-sydnone (1.84 g, 0.005 mol) and phenyl hydrazine hydrate (0.5 mL, 0.005 mol) in acetic acid (15 mL) was refluxed on water bath for 3 h. Progress of the reaction was monitored by TLC.

Scheme 2 Synthesis of Pyrazoles 2a - 2h

After completion of the reaction, the resultant clear solution was poured into ice-cold water. The precipitate formed was filtered and dried. The solid on crystallization in ethanol afforded the light yellow crystalline compound 3-[4'-(1"-acyl-5"- quinoline-2"-pyrazolin-3"-yl)phenyl]sydnone **4** 84% (2.73 g). Compound **4** (2.61g, 0.005 mol) was suspended in acetic anhydride (10 mL) and to this a mixture of bromine (0.3 mL, 0.055 mol) in acetic anhydride (5 mL) was added with constant stirring at 0 °C. After completion of addition, the stirring was continued for another 30 minutes. Then the reaction mixture was warmed on a water bath at 60 °C until evolution of carbon dioxide ceases. Then the reaction mixture was then poured into water, solid separated was filtered and dried. The separated solid on crystallization ethanol afforded **5** as light yellow crystalline compound in 68% yield (Scheme 2 & Table 3).

Compound	R′	R″	M.P ⁰ C	Yield %	Mol. Form	Elemental analysis % Found (Calc)		
Code						С	Η	N
2a	Cl	Н	172-73	72	$C_{27}H_{20}O_2N_5Cl$	67.29	4.15	14.53
						(67.30)	(4.16)	(14.52)
2 h	വ	н	187 88	73	$C_{27}H_{21}O_2N_5 \ S$	67.64	4.38	14.61
20	511	п	10/-00	15		(67.65)	(4.47)	(14.62)
20	Cl	OCH.	168-69	168-69 85 C ₂₈ H ₂₂ O ₃ N ₅ Cl	C. H. O. N.Cl	65.69	4.30	13.68
20	CI	00113	108-09		$C_{28}I_{22}O_{3}I_{5}CI$	(65.70)	(4.31)	(13.67)
2d	SH	OCH ₃	211-12	86	$C_{28}H_{23}O_3N_5S$	66.01	4.51	13.75
20	511					(66.02)	(4.52)	(13.76)
20	2 C1 OH 198-99 74 CH	CarHaoOaNaCl	65.13	4.02	14.07			
20	CI	on	011 176-77 74 C ₂₇ 11 ₂₀ O ₃ 1N ₅ Cl	02/11/200311301	(65.14)	(4.03)	(14.06)	
2f	сн	ОН	103_04	77	C-H-O-N-S	65.45	4.24	14.14
21	511	011	175-74	,,	C ₂ /H ₂ O ₃ H ₅ S	(65.46)	(4.25)	(14.13)
2g	Cl	NO_2	212-13	68	$C_{27}H_{19}O_4N_6Cl$	61.54	3.60	15.95
						(61.55)	(3.61)	(15.96)
2 h	SH	NO_2	185-86	70	$C_{27}H_{20}O_4N_6S$	61.83	3.81	16.03
211						(61.84)	(3.83)	(16.02)

Table 3. Physical properties of pyrazoles 2a to 2h (Para isomer only)

3-{-[5-(2-Chloroquinolin-3-yl)-1-phenyl-1H-pyrazol-3-yl] phenyl}-5-methyl-1,3,4-oxadiazol-2(3H)-one (2a)

Yield 72%; mp 172-73 0 C, re-crystallized with ethanol; IR (KBr), v_{max}/cm^{-1} : 1776(lactone C=O), 1690; ¹H NMR (CDCl₃), δ : 2.31 (3H, s, C-5 CH₃), 8.62 (dd, 1H, H-5), 7.82 (d, J = 8.1 Hz, 1H, H-6), 7.65–7.54 (m, 2H, H-7, H-8), 7.45–7.15 (br-m, 9H, Ar-H), 5.20 (dd, 1H, CHx), 4.2 (dd, 1H, H_A), 3.61 (dd, 1H, H_B).

3-{-[5-(2-Mercaptoquinolin-3-yl)-1-phenyl-1H-pyrazol-3-yl] phenyl}-5-methyl-1,3, 4-oxadiazol-2(3H)-one (**2b**)

Yield 73%; mp 187-88 0 C, re-crystallized with ethanol; IR (KBr), v_{max}/cm^{-1} : 1775(lactone C=O), 1678; 1 H NMR (CDCl₃), δ : 2.0 (3H, s, C-5 CH₃), 8.62 (dd, 1H, H-5), 7.84 (d, 1H, H-6), 7.62–7.53 (m, 2H, H-7, H-8), 3.0 (s, 1H, SH Proton), 7.41–7.12 (br-m, 9H, Ar-H), 5.20 (dd, 1H, CHx), 4.2 (dd, 1H, H_A), 3.61 (dd, 1H, H_B).

3-{-[5-(2-Chlor-7-methoxyoquinolin-3-yl)-1-phenyl-1H-pyrazol-3-yl] phenyl}-5-methyl-1,3,4-oxadiazol-2(3H)-one (**2c**)

Yield 85%; mp 168-69 0 C, re-crystallized with ethanol; IR (KBr), v_{max}/cm^{-1} : 1772 (lactone C=O), 1667; ¹H NMR (CDCl₃), δ : 1.9 (3H, s, C-5 CH₃), 8.62 (dd, 1H, H-5), 7.80 (d, J = 8.1 Hz, 1H, H-6), 7.60–7.52 (m, 2H, H-7, H-8), 7.43–7.10 (br-m, 9H, Ar-H), 5.18 (dd, 1H, CHx), 4.30 (dd, J = 12.3, 19.2 Hz, 1H, H_A), 3.76 (s, 3H,OCH₃), 3.61 (dd, J = 7.2, 19.2 Hz, 1H, H_B).

3-{-[5-(2-Mercapto-7-methoxyoquinolin-3-yl)-1-phenyl-1H-pyrazol-3-yl]phenyl}-5-methyl-1,3,4-oxadiazol-2(3H)-one (**2d**)

Yield 86%; mp 211-12 0 C, re-crystallized with ethanol; IR (KBr), v_{max}/cm^{-1} : 1777 (lactone C=O), 1677; ¹H NMR (CDCl₃), δ : 1.7(3H, s, C-5 CH₃), 8.62 (dd, J = 7.8, 1.2 Hz, 1H, H-5), 7.80 (d, 1H, H-6), 7.63–7.56 (m, 2H, H-7, H-8), 3.4 (s, 1H, SH Proton), 7.53–7.16 (br-m, 9H, Ar-H), 5.18 (dd, J = 7.2, 12.3 Hz, 1H, CHx), 4.29 (dd, 1H, H_A), 3.71 (s, 3H,OCH₃), 3.69 (dd, J = 7.2, 19.2 Hz, 1H, H_B).

3-{-[5-(2-Chloro-7-hydroxyoquinolin-3-yl)-1-phenyl-1H-pyrazol-3-yl]phenyl}-5-methyl-1,3,4-oxadiazol-2(3H)-one (**2e**)

Yield 74%; mp 198-99 0 C, re-crystallized with ethanol; IR (KBr), v_{max}/cm^{-1} : 1772 (lactone C=O), 1675; 1 H NMR (CDCl₃), δ : 2.2 (3H, s, C-5 CH₃), 8.66 (dd, 1H, H-5), 7.85 (d, J = 8.1 Hz, 1H, H-6), 7.68–7.56 (m, 2H, H-7, H-8), 7.55–7.11 (br-m, 9H, Ar-H), 5.10 (dd, 1H, CHx), 4.29 (dd, 1H, H_A), 3.69 (dd, 1H, H_B).

3-{-[5-(2-Mercapto-7-hydroxyoquinolin-3-yl)-1-phenyl-1H-pyrazol-3-yl]phenyl}-5methyl-1,3,4-oxadiazol-2(3H)-one (**2f**)

Yield 74%; mp 198-99 0 C, re-crystallized with ethanol; IR (KBr), v_{max}/cm^{-1} : 1773 (lactone C=O), 1671; ¹H NMR (CDCl₃), δ : 2.0(3H, s, C-5 CH₃), 8.63 (dd, 1H, H-5), 7.85 (d, 1H, H-6), 7.61–7.54 (m, 2H, H-7, H-8), 3.2 (s, 1H, SH Proton), 7.52–7.10 (br-m, 9H, Ar-H), 5.15 (dd, 1H, CHx), 4.20(dd, , 1H, H_A), 3.66 (dd, 1H, H_B).

3-{-[5-(2-Chloro-7-nitroquinolin-3-yl)-1-phenyl-1H-pyrazol-3-yl]phenyl}-5-methyl-1,3,4-oxadiazol-2(3H)-one (**2g**)

Yield 68%; mp 212-13 0 C, re-crystallized with ethanol; IR (KBr), v_{max}/cm^{-1} : 1771(lactone C=O), 1678; 1 H NMR (CDCl₃), δ : 1.7(3H, s, C-5 CH₃), 8.42 (dd, J = 7.8, 1.2 Hz, 1H, H-5), 7.94 (d, J = 8.1 Hz, 1H, H-6), 7.68–7.54 (m, 2H, H-7, H-8), 7.52–7.10 (br-m, 9H, Ar-H), 6.12 (dd, J = 7.5, 12.6 Hz, 1H, CHx), 4.32 (dd, , 1H, H_A), 3.68 (dd, J = 7.5, 19.2 Hz, 1H, H_B).

3-{-[5-(2-Mercapto-7-nitroquinolin-3-yl)-1-phenyl-1H-pyrazol-3-yl]phenyl}-5-methyl -1,3,4-oxadiazol-2(3H)-one (**2h**)

Yield 70%; mp 185-86 0 C, re-crystallized with ethanol; IR (KBr), v_{max}/cm^{-1} : 1771(lactone C=O), 1678; ¹H NMR (CDCl₃), δ : 2.5 (3H, s, C-5 CH₃), 8.14 (dd, J = 8.1, 1.5 Hz, 1H, H-5), 7.94 (d, J = 8.1 Hz, 1H, H-6), 7.49 (t, J = 7.2 Hz, 1H, H-7), 3.1 (s, 1H, SH Proton), 7.52–7.10 (br-m, 9H, Ar-H), 6.12 (dd, J = 7.5, 12.6 Hz, 1H, CHx), 4.32 (dd, , 1H, H_A), 3.68 (dd, J = 7.5, 19.2 Hz, 1H, H_B).

All the newly synthesized compounds were screened for their antimicrobial activity by cup plate method at 100 μ g/mL concentration in DMF against the Bacterial strains viz., *E. coli & B. subtilis* and also against Fungal strains *viz., A. niger* and *A. sereus*. Norfloxacin for bacteria and Griseofulvin as the reference drugs respectively. All these compounds were less active against the bacterial strains, but some of them showed selective fungal inhibitory activity (Table 4).

		2	17		
Compound	Antib	oacterial	Antifungal		
Code	E.coli	B. subtilis	A. niger	C. albicans	
2a	12	11	18	17	
2b	13	14	22	21	
2c	14	15	21	19	
2d	15	14	20	21	
2e	13	14	21	20	
2f	13	13	18	17	
2g	11	10	16	15	
2h	12	11	17	16	
Norfloxacin	22	22			
Grisiofulvin			24	24	
DMF	04	04	04	04	

Table 4. Antimicrobial activities of synthesized pyrazoles 2a to 2h

The synthesized compounds were characterized by various spectral studies. Compounds **2b-2e** were found to be more susceptible towards the fungal strains as compared to bacterial strains (Figure 1 and 2).

Figure 1. Antibacterial activity of Pyrazoles 2a to 2h

Figure 2. Antifungal activity of Pyrazoles 2a to 2h

Results and Discussion

Compound 1, were prepared by acetyl phenyl sydnone was suspended in sodium hydroxide solution in water and ethanol and 2-mercaptoquinoline-3-carbaldehyde was added to it. The reaction mixture was stirred at room temperature (Scheme 1). Further, the compound 1 and phenyl hydrazine hydrate in acetic acid was refluxed on water bath for 3 hours, to give light yellow crystalline compound 3-[4'-(1''-acyl-5''-quinoline-2''-pyrazolin-3''-yl)phenyl] sydnone (4). Further, more the compound (4) was suspended in acetic anhydride and to this a mixture of bromine in acetic anhydride was added with constant stirring at 0 °C. After completion of addition, the stirring was continued for another 30 minutes to give light yellow crystalline compound (5) (Scheme 2).

The structures of all newly prepared 2-pyrazolines were confirmed by spectroscopic data and elemental analyses. In general, all the compounds exhibited C=N stretching vibrations in the range of 1691–1454 cm⁻¹. ¹H NMR spectra of these compounds exhibited an ABX pattern because of the presence of two diastereotopic protons at C-4 and a single proton at C-5 of 2-pyrazoline. Their signals appeared in general as three doublet of doublets in the range of $\delta = 6.18-5.17$, 4.35–4.21, and 3.72–3.26, each integrating to one proton. A similar ¹H NMR pattern in 2-pyrazolines was reported in literature²². It is interesting that in

the ¹H NMR spectra, a doublet of doublets integrating to one proton appears in the region of δ =8.62–8.16. This is due to H-5 of the quinolinyl ring system. The large deshielding of this proton was attributed to the anisotropy of C=N of the pyrazoline ring. ¹³C NMR chemical shift values of C-atoms at δ = 62–54 (C-5) and 47–42 (C-4) confirmed the 2-pyrazoline character deduced from the ¹H NMR data, similar to earlier reported results²². The presences of *N*-methyl and *N*-ethyl groups were also confirmed by the ¹H NMR spectra.

Acknowledgement

The authors are thankful to USIC Dharwad for providing the spectral studies. Authorities of BioGenics Hubli for providing facilities in carrying out the biological studies of the compounds.

References

- 1. Wiley RH (Ed.), The Chemistry of Heterocyclic Compounds; Weissberger A (Ed.) Interscience Publishers: New York 1967, **22**, 180.
- 2. Elguero J, In Comprehensive Heterocyclic Chemistry II. Katritzky A R, Rees C W, Scriven EF (Eds.) Pergamon Press: Oxford. 1996, **3**, 1.
- 3. Lévai A, Khim Geterotsikl Soedin., 1997, 747,
- 4. Lévai A J, Heterocycl Chem., 2002, **39**,1.
- 5. Ramalingham K, Thyvekikakath GX, Berlin K D, Chesnut R W, Brown R A, Durham N N, Ealick A E and van der Helm D, *J Med Chem.*, 1977, **20**, 847.
- 6. Brown R E and Jr Shavrel J, U S Patent 1972, 3, 624, **102**, *Chem Abstr.*, 1972 **76**, 59618.
- 7. Lombardino J G and Otterness I G, J Med Chem., 1981, 24, 830.
- 8. Fischer E and Knövenagel O, Ann Chem., 1887, 239,194.
- 9. Raiford L C and Peterson W J, J Org Chem., 1937, 1,544.
- 10. Raiford L C and Gundy G V, J Org Chem., 1938, 3, 265.
- 11. Raiford L C and Manley R H, J Org Chem., 1940, 5, 590.
- 12. Ried W and Dankert G, *Chem Ber.*. 1957, **90**, 2707.
- 13. Wiley R H, Jarboe C H, Hayes F N, Hansbury E, Nielsen J T, Callahan P X and Sellars M C, *J.Org Chem.*, 1958, **23**, 732.
- 14. Sammour A E A, *Tetrahedron*, 1964, **20**, 1067.
- 15. Bhatnagar I, George M V, Tetrahedron, 1968, 24, 1293.
- 16. Aubagnac J L, Elguero J and Jacquier R, Bull Soc Chim Fr., 1969, 3292.
- 17. Kabli R A, Khalaf A A, Zimaity M T, Khalil A M, Kaddah A M and Al-Rifaie H A, *J Indian Chem Soc.*, 1991, **68**, 47.
- 18. Gokhan N, Ye silada A, Ucar G and Erol K, Arch Pharm Hung., 2003, 336, 362.
- 19. Sharma T C, Pawar S R and Reddy N J, Acta Chim., 1983, 112, 159.
- 20. Dhar D N and Raghunathan R, Indian J Chem., 1984, 23B, 1187.
- 21. Orlov V D, Aziz M A, Mchedlov-Petrosyan N O and Asoka P K D, *Khim Geterotsikl Soedin.*, 1985, 1511.
- 22. Levai A, Jeko J and Brahmbhatt D I, J Heterocyclic Chem., 2005, 42, 1231.
- 23. Levai A and Jeko J, J Heterocyclic Chem., 2006, 43, 111.
- 24. Tóth G, Szöllősy Á, Lóránd T, Kónya T, Szabó D, Földesi A and Lévai A, *J Chem Soc Perkin Trans.*, 1989, **2**, 319.
- 25. Szöllősy Á, Tóth G, Lóránd T, Kónya T, Aradi F and Lévai A, *J Chem Soc., Perkin Trans.*, 1991, **2**, 489.
- 26. Collins L and Franzblau S G, Antimicrob Agents Chemother., 1997, 41, 1004.
- 27. Bilgin A A, Palaska E, Sunal R and Gümüsel B, Pharmazie, 1994, 49, 67.

- 28. Mishriky N, Asaad F M, Ibrahim Y A and Girgis A S, *Pharmazie*, 1996, 51, 544.
- 29. Levai A, Heterocycl Commun., 2003, 9, 287.
- 30. Chimenti F, Bizzarri B, Manna F, Boalsco A, Secci D, Chimenti P, Granese A, Rivanera D, Lilli D, Scaltrito M M and Brenciaglia M I, *Bioorg Med Chem Lett.*, 2005, **15**, 603.
- 31. Dighade S R and Chincholkar M M, Asian J Chem., 2001, 13, 606.
- 32. Wang P, Onozawa-Komatsuzaki N, Himeda Y, Sugihara H, Arakawa H and Kasuga K, *Tetrahedron Lett.*, 2001, **42**, 9199.
- 33. Manna F, Chimenti F, Bolasco A, Secci D, Bizzarri B, Befani O, Turini P, Mondovi B, Alcaro S and Tafi A, *Bioorg Med Chem Lett.*, 2002, **12**, 3629.
- 34. Lévai A, Patonay T, Silva A M S, Pinto D C G A and Cavaleiro J A S, *J Heterocycl Chem.*, 2002, **39**, 751.
- 35. Lévai A, Heterocycl Commun., 2003, 9, 287.
- 36. Lévai A, Silva A M S, Pinto D C G A, Cavaleiro J A S, Alkorta I, Elguero J and Jekő J, *Eur J Org Chem.*, 2004, 4672.