RESEARCH ARTICLE

Ultrasound-Promoted Synthesis of 9-Aryl-1,8-dioxooctahydroxanthenes Using TiO₂ as a Cheap and Reusable Catalyst

SHWETA KUMARI, AMIYA SHEKHAR and DEVENDRA D. PATHAK*

Department of Applied Chemistry, Indian School of Mines, Dhanbad-826004, Jharkhand, India *ddpathak@yahoo.com*

Received 21 November 2013 / Accepted 29 December 2013

Abstract: Reaction of aromatic aldehydes and dimedone was efficiently promoted by the TiO_2 as a catalyst in acetonitrile at room temperature under ultrasonic irradiation to afford the corresponding 9-aryl-1,8-dioxo-octahydroxanthene in excellent yields within minutes. However, the same reaction, without catalyst, yielded the corresponding 2,2'-arylmethylenebis(3-hydroxy-5,5-dimethyl-2-cycloexene-1-one). Study with various aldehydes and dimedone reveals that ultrasound and TiO_2 plays a key role in the synthesis of 9-aryl-1,8-dioxo-octahydroxanthene.

Keywords: Aldehydes, Dimedone, Ultrasound, Xanthene derivatives, TiO₂

Introduction

In recent years sonochemistry has been widely used in organic syntheses as it offers a versatile and facile pathway for a bewildering range of organic reactions¹. Sonochemistry involves the use of ultrasound technique to promote organic reactions. A large number of ultrasonic reactions can be carried out in higher yield, shorter reaction time or under milder conditions². Ultrasound irradiation has been demonstrated as an alternative energy source for organic reactions which can be ordinarily accomplished by heating³. Due to the thermal effect of ultrasound wave, larger amount of molecules can meet the demand for the active energy in a given reaction, leading to the apparent improvement of the reaction efficiency with increased rates and reduced reaction time. It is also observed that reactions performed under ultrasound irradiation are commonly easier to work-up as compared to the conventional reactions⁴. In recent time, the use of TiO₂ as catalyst has received a considerable attention in organic synthesis due to its environmental compatibility, ease of handling, non-toxic nature, low cost, chemical stability even under irradiation⁵, ease of separation from the reaction mixture and above all its reusability $protocol^6$. TiO₂ finds diverse industrial applications such as whitener in paint⁷, UV absorbers in sunscreen lotions and additives in food⁸. Besides these industrial applications, commercially available TiO₂

has invoked an interest as a green, inexpensive, mild and recyclable heterogeneous Lewis acid catalyst in numerous organic transformations such as Biginelli condensation⁹. Friedal-Crafts acylation¹⁰, Beckmann rearrangement¹¹ and also in the synthesis of dihydropyrazines¹².

Xanthene derivatives are parent compounds of a large number of naturally occurring as well as synthetic derivatives and occupy a prominent position in medicinal chemistry, such as antiviral, antibacterial, antiflammatory agents, novel CCR1 receptor antagonists, anticancer agents and antinociceptive¹³. Xanthene derivatives are also used as dyes, fluorescent materials and in laser technologies, due to their useful properties¹⁴.

A literature survey indicates that 9-aryl-1,8-dioxo-octahydroxanthene can be synthesized from aromatic aldehydes and dimedone in the presence of a number of catalysts, such as $CaCl_2$,¹⁵ SbCl_3/SiO₂,¹⁶ HCIO₄/SiO₂,¹⁷ FeCl_3/SiO₂,¹⁸ silica sulfuric acid¹⁹, Dowex-50w²⁰. Amberlyst-15²¹, [Hbim]BF₄²² and TMSCl²³, However, many of these reported synthetic protocols suffer from one or more disadvantages, such as long reaction time, moderate yields, the use of expensive catalyst, strongly acidic conditions, tedious work-up and formation of by-products. We herein report the TiO₂ promoted synthesis of 9-aryl-1,8-dioxo-octahydroxanthene from corresponding aldehydes and dimedone in acetonitrile at a room temperature under ultrasound. However, the same reaction, in absence of the catalyst, yielded the corresponding 2,2'-arylmethylenebis(3-hydroxy-5,5-dimethyl-2-cycloexene-1-one) (Scheme 1).

Scheme 1. Two-component synthesis of Xanthene derivatives

Experimental

All chemicals were purchased from commercial suppliers, such as Sigma-Aldrich and Merck. Reactions were carried out in a Rivotek $(25\pm1 \text{ }^{\circ}\text{C})$ ultrasonic cleaning bath at 50 kHz. The ultrasonic cleaner had an output power of 120W and a power supply of 450W. The tank dimensions were 290: 240:150 mm with a liquid holding capacity of 9.5 L. The reactions were carried out in a RB flask of 10 mL capacity suspended at the center of the cleaning bath, 5 cm below the surface of the liquid. The melting points of the products were recorded on a Bruker instrument and compared with the reported literature values.¹H and ¹³C NMR spectra were obtained on a 400 MHz NMR spectrometers Bruker Maldi-TOF. Chemical shifts are indicated in parts per million with respect to TMS. The IR spectra were recorded in the range of 4000-400 cm⁻¹ on an FTIR Perkin 2000 Model spectrometer using

KBr disk. Mass spectra were recorded on a High resolution mass spectrometer (UPLCMS) Bruker. Purity of the compounds was checked by TLC on a silica gel alumina sheet using *n*-hexane and ethylacetate as eluent. The visualization was accomplished with UV lamps at 254 nm.

General procedure for the synthesis of the synthesis of 2,2'-arylmethylenebis(3-hydroxy-5,5-dimethyl-2-cyclohexane-1-one) **3**(*a*-*i*)

A 10 mL round-bottomed flask containing an aldehyde (1 mmol), dimedone, (2 mmol), in acetonitrile (2 mL) was placed in an ultrasonic bath for 5 to 15 minute at room temperature. After completion, the reaction mixture was analyzed by TLC. The reaction mixture was treated with water, aqueous phase was extracted with ethylacetate (2x10 mL) and the organic layers was washed with water, saturated brine solution and dried over anhydrous Na₂SO₄. The combined organic layers were evaporated under reduced pressure and the resulting crude product was purified by column chromatography with ethylacetate and *n*-hexane. The products were characterized by ¹H NMR spectra. The spectroscopic data obtained on the synthesized compounds are given in spectral section.

General procedure for the synthesis of the synthesis of 9-Aryl-1,8-dioxo-octahydroxanthene derivatives **4(a-s)**

A 10 mL round- bottomed flask containing an aldehyde (1 mmol), dimedone, (2 mmol) and 5 mol % of TiO₂ in acetonitrile (2 mL) was placed in an ultrasonic bath for 5 to 15 minute at room temperature. The product was isolated with ethylacetate (3x5 mL) and the combined layer was filtered to separate out TiO₂ and residue washed with ethylacetate. The solid residue of TiO₂ was further washed with acetone (10 mL) and then dried up; this recovered TiO₂ is reusable. After removal of solvent from the combined filtrate under reduced pressure, the organic residue was subjected to column chromatography to obtain pure 9-aryl-1,8-dioxo-octahydroxanthene compound. The identity of the product was confirmed by IR, ¹H and ¹³C {¹H} NMR and Mass spectra. The spectroscopic data obtained on the synthesized compounds are given in below.

Spectral data for selected compounds

Compound 3a

White solid; Analytical TLC (silica gel 60) (30% EtOAc in hexane) $R_f = 0.3$; ¹H NMR (CDCl₃, 400 MHz): d 1.09 (s, 6H, 2 x CH₃), 1.22 (s, 6H, 2 x CH₃), 2.27-2.47 (m, 8H, 4 x CH₂), 5.53 (s, 1H, CH), 7.07-7.27 (m, 5H, Ar), 11.88 (s, 1H, OH).

Compound **3b**

White solid; Analytical TLC (silica gel 60) (30% EtOAc in hexane) $R_f = 0.3$; ¹H NMR (CDCl₃, 400 MHz): d 1.09 (s, 6H, 2 x CH₃), 1.20 (s, 6H, 2 x CH₃), 2.24-2.47 (m, 8H, 4 x CH₂), 5.52 (s, 1H, CH), 7.06-7.17 (m, 4H, Ar), 11.77 (s, 1H, OH).

Compound 3d

White solid; Analytical TLC (silica gel 60) (30% EtOAc in hexane) $R_f = 0.3$; ¹H NMR (CDCl₃, 400 MHz): d 1.05 (s, 6H, 2 x CH₃), 1.19 (s, 6H, 2 x CH₃), 2.20-2.39 (m, 8H, 4 x CH₂), 5.32 (s, 1H, CH), 7.18-7.20 (m, 4H, Ar), 11.71 (s, 1H, OH).

Compound 3e

White solid; Analytical TLC (silica gel 60) (30% EtOAc in hexane) $R_f = 0.3$; ¹H NMR (CDCl₃, 400 MHz): d 1.00 (s, 6H, 2 x CH₃), 1.10 (s, 6H, 2 x CH₃), 2.19-2.35 (m, 8H, 4 x CH₂), 5.45 (s, 1H, CH), 6.90-6.97 (m, 4H, Ar), 11.80 (s, 1H, OH).

Compound 3g

White solid; Analytical TLC (silica gel 60) (30% EtOAc in hexane) $R_f = 0.3$; ¹H NMR (CDCl₃, 400 MHz): d 1.02 (s, 6H, 2 x CH₃), 1.12 (s, 6H, 2 x CH₃), 2.22-2.43 (m, 8H, 4 x CH₂), 3.45 (s,3H, OCH₃), 5.50 (s, 1H, CH), 6.78-7.84 (2H, Ar), 6.92-7.00 (2H, Ar), 11.79 (s, 1H, OH).

Compound 3h

White solid; Analytical TLC (silica gel 60) (30% EtOAc in hexane) $R_f = 0.3$; ¹H NMR (CDCl₃, 400 MHz): d 1.02 (s, 6H, 2 x CH₃), 1.15 (s, 6H, 2 x CH₃), 2.19 (s, 3H, CH₃) 2.36-2.57 (m, 8H, 4 x CH₂), 5.62 (s, 1H, CH), 6.80-6.89 (2H, Ar), 6.90-7.19 (2H, Ar), 11.84 (s, 1H, OH).

Compound 3i

White solid; Analytical TLC (silica gel 60) (30% EtOAc in hexane) $R_f = 0.3$; ¹H NMR (CDCl₃, 400 MHz): d 1.04 (s, 6H, 2 x CH₃), 1.15 (s, 6H, 2 x CH₃), 2.27-2.47 (m, 8H, 4 x CH₂), 5.53 (s, 1H, CH), 6.72-7.89 (2H, Ar), 6.90-7.00 (2H, Ar), 11.88 (s, 1H, OH).

Compound 4a

White solid; Analytical TLC (silica gel 60) (25% EtOAc in hexane) $R_f = 0.25$; ¹H NMR (CDCl₃, 400 MHz): d 0.99 (s, 6H, 2 x CH₃), 1.12 (s, 6H, 2 x CH₃), 2.14-2.47 (m, 8H, 4 x CH₂), 4.53 (s, 1H, CH), 7.07-7.27 (m, 5H, Ar); ¹³C NMR (CDCl₃) : δ 27.33, 29.27, 31.83, 32.2, 40.87, 50.74, 115.67, 126.36, 128.04, 128.37, 144.08, 162.24, 196.37.LC–MS: 367 [M+17].

Compound 4b

White solid; Analytical TLC (silica gel 60) (25% EtOAc in hexane) $R_f = 0.25$; IR (CHCl₃,cm⁻¹): 3020, 2961, 1720, 1667, 1592, 1530, 1352, 1198, 1000; ¹H NMR (CDCl₃, 400 MHz): d 01.19 (s, 6H, 2 x CH₃), 1.24 (s, 6H, 2 x CH₃), 2.37-2.57 (m, 8H, 4 x CH₂), 4.86 (s, 1H, CH), 7.27 (d, 2H, Ar), 8.14 (d, 2H,Ar); ¹³C NMR (CDCl₃): δ 27.14, 29.60, 32.72, 50.16, 56.85, 60.19, 106.20, 115.10, 136.85, 140.78, 153.68, 163.93, 197.17 LC–MS: 412 [M+17].

Compound 4e

white solid; Analytical TLC (silica gel 60) (25% EtOAc in hexane) $R_f = 0.25$; ¹H NMR (CDCl₃, 400 MHz): d 1.08 (s, 6H, 2 x CH₃), 1.20 (s, 6H, 2 x CH₃), 2.27-2.47 (m, 8H, 4 x CH₂), 5.43 (s, 1H, CH), 6.93-6.95 (d, 2H, Ar), 7.35-7.37 (d, 2H,Ar); ¹³C NMR (CDCl₃) : δ 27.43, 29.53, 31.43, 32.48, 46.43, 47.05, 115.26, 119.64, 128.61, 131.26, 137.31, 189.41, 190.64; LC–MS: 445 [M+17].

Compound 4h

White solid; Analytical TLC (silica gel 60) (25% EtOAc in hexane) $R_f = 0.25$; IR (CHCl₃,cm⁻¹): 3392, 3064, 2960, 2929, 2253,1719, 1667, 1595, 1380,1166; ¹H NMR (CDCl₃, 400 MHz): d 1.08 (s, 6H, 2 x CH₃), 1.20 (s, 6H, 2 x CH₃), 2.27-2.47 (m, 8H, 4 x CH₂), 4.51 (s, 1H, CH), 6.90-7.0 (d, 2H, Ar), 7.22-7.24 (d, 2H,Ar); ¹³C NMR (CDCl₃): δ 27.70, 29.72, 31.80, 32.60, 41.37, 51.11, 115.60, 128.60, 130.20, 132.40, 143.11, 162.80, 196.70; LC–MS: 401 [M+17].

Compound 4k

Colorless solid; Analytical TLC (silica gel 60) (25% EtOAc in hexane) $R_f = 0.25$; IR (CHCl₃, cm⁻¹): 3014, 2958, 2873, 1891, 1667, 1624,1510, 1360,1215; ¹H NMR (CDCl₃, 400 MHz): d 1.08 (s, 6H, 2 x CH₃), 1.21 (s, 6H, 2 x CH₃), 2.27-2.37 (m, 8H, 4 x CH₂), 4.53 (s, 1H, CH), 6.78-6.80 (d, 2H, Ar), 7.22-7.24 (d, 2H,Ar); ¹³C NMR (CDCl₃) : δ 27.39, 29.27, 31.40, 32.05, 46.47, 47.4, 113.67, 115.02, 127.36, 129.04, 157.37, 189.08, 190.24; LC–MS: 397 [M+17].

Compound 4n

White solid; Analytical TLC (silica gel 60) (25% EtOAc in hexane) $R_f = 0.25$; IR (CHCl₃,cm⁻¹): 3148, 2958, 1720, 1590, 1378, 1192,1081; ¹H NMR (CDCl₃, 400 MHz): d 0.99 (s, 6H, 2 x CH₃), 1.09 (s, 6H, 2 x CH₃), 2.14-2.20 (d, 4H), 2.24(s, 3H), 2.45(s, 4H), 4.78 (s, 1H, CH), 6.77-7.27 (4H, Ar); LC–MS: 387 [M+17].

Results and Discussion

We investigated theTiO₂ catalyzed, ultrasound promoted two-component synthesis of 9-aryl-1,8-dioxo-octahydroxanthene from various aldehydes and dimedone in acetonitrile at room temperature. Initially, the reaction of 4-nitrobenzaldehyde (1 mmol), dimedone (2 mmol) was chosen as a model reaction to optimize the reaction conditions, with or without catalyst. To our surprise the reaction proceeded efficiently in presence of TiO₂ (5 mol %) as catalyst to the afford the corresponding 9-aryl-1,8-dioxo-octahydroxanthene 4b (95% yields) in dramatically 5 min at room temperature under sonication (Table 1, entry 5). However the same reaction under the, same reaction conditions, but without catalyst, yielded the corresponding open chain analogue of 9-aryl-1,8-dioxo-octahydroxanthene 3b (90%) (Table 1, entry 6).

Entry	Condition	Catalyst/ No Catalyst	Solvent	Time	Product 3 Yield ^a , %	Product 4 Yield ^b , %
1	30 °C without sonication	TiO ₂	Acetonitrile	24 h	Trace	Trace
2	30 °C without sonication	No Catalyst	Acetonitrile	24 h	Trace	Nil
3	30 °C without sonication	TiO ₂	No solvent	24 h	Nil	Trace
4	30 °C without sonication	No Catalyst	No solvent	24 h	Nil	Nil
5	30 °C with sonication	TiO ₂	Acetonitrile	5 min	Nil	95
6	30 °C with sonication	No Catalyst	Acetonitrile	5 min	90	Trace
7	30 °C with sonication	TiO ₂	No Solvent	5 min	Nil	58
8	30 °C with sonication	No Catalyst	No Solvent	5 min	28	Trace
9	Reflux without sonication	TiO ₂	Acetonitrile	24 h	10	Trace
10	Reflux without sonication	No Catalyst	Acetonitrile	24 h	Trace	Trace
		a, b Is a lated w	iald			

Table 1. Reaction of 4-nitrobenzaldehyde and dimedone under different reaction conditions

^{,,,,}Isolated yield

When the reaction was carried out with and without solvents at room temperature without ultrasonic radiations, merely traces of the product were observed even after 24 h. (Table1, entry 1–4). Only traces of product were obtained when the reaction was carried out at elevated temperature in the absence of ultrasound radiations (Table1, entry 9-10). The mechanism of the reaction between aldehyde and dimedone has been described in literature²⁴. First, intermediate **3** was formed through Knoevenagel addition between dimedone and aldehyde and subsequently, water elimination from intermediate **3** resulted in the formation of desired **4**. In these processes, TiO₂ plays a crucial role in accelerating the reaction, especially for water elimination of intermediate **3**. It can be verified by the fact that the reaction under catalyst-free condition only yielded the product **3**. Ultrasonic effect also plays an important role in accelerating the reaction, presumably by cavitations²⁵.

In addition to TiO₂, the reaction was also carried out in the presence of other catalyst, *i.e.* ZnO, CuO and SiO₂ and the results are summarized in Table 2. As evident from Table 2, TiO₂ proved to be the best catalyst for the reaction of 4-nitrobenzaldehyde and dimedone under ultrasonic irradiation, in acetonitrile at room temperature (Table 2, entry 1).

Entry	Catalyst, 5 mol %	Time, min	Product 4, %, Yield ^a
1	TiO ₂	5	95
2	ZnO	5	45
3	CuO	5	36
4	SiO_2	5	52

Table 2. Scanning of catalysts, using reaction between 4-nitrobenzaldehyde and dimedone under ultrasonication

^aIsolated yield

With the best catalyst in hand, we moved to study the effect of catalyst loading on the model reaction and the result was listed in Table 3.

 Table 3. Effect of catalyst loading on the reaction of 4-nitrobenzaldehyde and dimedone under ultrasonication

Entry	TiO ₂ mol %	Time min	Product 4 %, Yield ^a
1	1	5	63
2	5	5	95
3	10	5	95
4	20	5	95

^aIsolated yield

After optimization of the catalyst loading, the reaction was also performed in various solvents such as, water, ethanol, methanol, dichloromethane, ethyl acetate, toluene and acetonitrile for the both type of reaction (with/ without catalyst). As evident from Table 4, the acetonitrile was found to be the best solvent for the reaction (Table 4, entry 1-6).

 Table 4. Effect of solvents on the reaction of 4-nitrobenzaldehyde, and dimedone under ultrasonication

Entry	Solvent	Time min	Product 3 %, Yield ^a	Product 4 %, Yield ^b
1	Dichloromethane	5	82	89
2	Acetonitrile	5	90	95
3	Water	5	80	66
4	Ethanol	5	65	71
5	Methanol	5	54	79
6	Toluene	5	61	76

^{*a,b*}Isolated yield

After the optimization of catalyst and other reactions conditions, we investigated the reaction of other benzaldehydes having electron-donating and electron-withdrawing group with dimedone under ultrasonic conditions. The results are given in Table 5 and Table 6 which shows that all the reactions preceded clean, to give the corresponding 2,2'-arylmethylenebis(3-hydroxy-5,5-dimethyl-2-cycloexene-1-one) **3** and 9-aryl-1,8-dioxo-octahydroxanthene **4** respectively.

Table 5. Synthesis of 2,2'-arylmethylenebis(3-hydroxy-5,5-dimethyl-2-cyclohexane-1-one)

 derivatives

Entry	Aldehyde	Product ^a	Time, min	%,Yield ^b	m.p. °C	m.p. ^{lit} °C
1	СНО	онон За	6	88	190-191	192-194 ²²
2	CHO NO ₂		5	90	194-197	195-197 ²²
3	CHO NO ₂	OH OH 3c	8	86	200-202	201-203 ²²
4	CHO Br	OH OH 3d	8	73	236-238	241-243 ²²
5	CHO CI	он он Зе	13	85	141-144	145-147 ²²
6	CHO	OH OH 3f	14	79	199-201	202-204 ²²
7	CHO OCH ₃	OCH ₃ O O O OH OH 3g	10	84	148-149	146-148 ²²
						<i>a</i> . 1

Contd...

 \sim

^{*a*}Purity determined by TLC &¹H NMR. ^{*b*}Isolated yield

Table 6. Synthesis	of 9-aryl-1,8-dio	xo-octahydroxanthene	derivatives
--------------------	-------------------	----------------------	-------------

	R + 2	O TiO ₂ (5 mol Sonication, 1 CH ₃ CN	%) rt	R-		<
	1	2			4 (a-s)	
Entry	Aldehyde	Product ^a	Time min	%,Yield ^b	m.p. °C	m.p. ^{lit} °C
1	CHO	o o o o o o o o o o o o o o o o o o o	6	90	204-206	205 ²⁴
2	CHO NO ₂		5	95	221-223	222-224 ²⁴
3	CHO NO ₂		8	93	164-166	165-166 ²⁴
4	CHO NO ₂	NO2 0 0 4d	7	87	250-252	252-254 ²⁴
						Contd

5	CHO Br	Br o o o 	5	91	240-243	240-242 ²⁴
	CHO Br	o o o o o o o o o o o o o o o o o o o	9	89	190-191	190-192 ²⁴
7	CHO Br	Br O H H H H H H H H H H H H H H H H H H	8	93	226-227	226-229 ²⁴
8	CHO Cl	ci o o o 4h	6	92	230-233	230-232 ²⁴
9	CHO		8	94	184-185	183-185 ²⁴
10	CHO Cl		9	95	225-227	226-227 ²⁴
11	CHO OCH ₃		10	93	241-242	242-243 ²⁴
12	CHO OCH3	OCH3	11	91	161-162	161-162 ²⁴
						Contd

13	CHO CH ₃ CHO	eH ₃ o o o o o 4m	14	98	214- 216	215- 216 ²⁴
14	CH ₃	4n	15	88	207- 208	208- 210 ²⁴
15	CHO CH ₃		11	93	209- 211	210- 212 ²⁴
16	СНО	о о о о о о о 4р	12	94	249- 250	246 ²⁴
17	СНО	o o o o o o o o o o o o o o o o o o o	14	92	225- 226	225- 227 ²⁶
18	CN	CHO 4r	8	90	218- 220	217- 218 ²⁶
19	СНО	o o o o o o o o o o o o o o o o o o o	13	91	>300	>300 ²⁶

^aPurity determined by TLC &¹H and ¹³C NMR. ^bIsolated yield

The products were obtained as colorless crystalline solids. All compounds were characterized by IR, ¹H, ¹³C {¹H} NMR and Mass Spectra. The reaction between aldehyde and dimedone under ultrasonic irradiation in acetonitrile without catalyst gave only chain compound **3b** as the major product which was confirmed by the presence of singlet at δ 11.77, and 5.52 corresponding to -OH and methyne protons, respectively in the ¹H NMR spectrum. Similarly a singlet at δ 4.86, characteristic of the methyne proton was observed for the cyclized compound **4b**. The spectra of synthesized compounds were compared with the literature Values¹⁷⁻²⁵.

All the spectroscopic data obtained were found to be in good agreement with the reported valves. The recyclability of catalyst TiO_2 was also studied. The catalyst can be easily filtered out from the aqueous layer and dried for reuse. It is apparent from Figure 1 that the catalyst can be used up to five times without the significantly of catalytic activity.

Figure 1. Reusability of catalyst

Conclusion

Our studies clearly demonstrates that TiO_2 is a versatile, cheap, and reusable catalyst for the synthesis of 9-Aryl-1,8-dioxo-octahydroxanthene from aldehyde and dimedone under ultrasonic radiations.

References

- 1. Patil R, Bhoir P, Deshpande P, Wattamwar T, Shirude M and Chaskar P, *Ultrason Sonochem.*, 2013, **20(6)**, 1327-1336; DOI:10.1016/j.ultsonch.2013.04.002
- 2. Zang H, Su Q, Mo Y, Cheng B W and Jun S, *Ultrason Sonochem.*, 2010, **17(5)**, 749-751; DOI:10.1016/j.ultsonch.2010.01.015
- 3. Dar B, Singh A, Sahu A, Patidar P, Chakraborty A, Sharma M and Singh B, *Tetrahedron Lett.*, 2012, **53(41)**, 5497-5502; DOI:10.1016/j.tetlet.2012.07.123
- 4. Zang H, Zhang Y, Zang Y and Cheng B W, *Ultrason Sonochem.*, 2010, **17(3)**, 495-499; DOI:10.1016/j.ultsonch.2009.11.003
- 5. Hosseini M Sarvari, *Tetrahedron*, 2008, **64(23)**, 5459-5466; DOI:10.1016/j.tet.2008.04.016
- 6. Brahmachari G and Das S, Indian J Chem., 2013, 52B(2), 387-393.
- Tryk D A, Fujishima A and Honda K, *Electrochim Acta*. 2000, 45(15-16), 2363-2376; DOI:10.1016/S0013-4686(00)00337-6
- 8. Philips L Y and Barbano D M, J Dairy Sci., 1997, 80, 2726.
- Kassace M Z, Masrouri H, Movahedi F and Mohammadi R, *Helv Chim Acta*, 2010, 36(2), 361-364; DOI:10.1002/hlca.200900197
- 10. Pasha M A, Manjula K and Jayashankar V P, Synth React Inorg., 2006, 36(4), 321-324; DOI:10.1080/15533170600651389
- 11. Sharghi H and Sarvari M S, J Chem Res., 2003, 176-180.
- 12. Subba R K V, Srinivas B, Prasad A R and Subrahmanyam M, *Chem Commun.*, 2000, 1533-1543; DOI:10.1039/B003934I
- Ilangovan A, Muralidharan S, Sakthivel P, Malayappasamy S, Karuppusamy S and Kaushik M P, *Tetrahedron Lett.*, 2013, 54(6), 491-494; DOI:10.1016/j.tetlet.2012.11.058

- 14. Srihari P, Mandal S S, Reddy J S S, Srinivasa Rao R and Yadav J S, *Chin Chem Lett.*, 2008, **19(7)**, 771-778; DOI:10.1016/j.cclet.2008.05.005
- Ilangovan A, Muralidharan S, Sakthivel P, Malayappasamy S, Karuppusamy S and Kaushik M P, *Tetrahedron Lett.*, 2013, 54(6), 491-494; DOI:10.1016/j.tetlet.2012.11.058
- 16. Zhang Z H and Liu Y H, *Catal Commun.*, 2008, **9(8)**, 1715-1719; DOI:10.1016/j.catcom.2008.01.031
- 17. Kantevari S, Bantu R and Nagarapu L, *J Mol Catal: Chem.*, 2007, **269(1-2)**, 53-57; DOI:10.1016/j.molcata.2006.12.039
- Shaterian H R, Hosseinian A and Ghashang M, *Phosphorus, Sulfur Silicon*, 2008, 183(12), 3136-3144; DOI:10.1080/10426500802066096
- 19. Seyyedhamzeh M, Mirzaei P and Bazgir A, *Dyes Pigments*, 2008, **76(3)**, 836-839; DOI:10.1016/j.dyepig.2007.02.001
- 20. Shakibaei G I, Mirzaei P and Bazgir A, *Appl Catal A Gen.*, 2007, **325(1)**, 188-192; DOI:10.1016/j.apcata.2007.03.008
- 21. Das B, Thirupathi P, Mahender I, Reddy V S and Rao Y K *J Mol Catal Chem.*, 2006, **247(1-2)**, 233-239; DOI:10.1016/j.molcata.2005.11.048
- Venkatesan K, Pujari S S, Lahoti R J and Srinivasan K V, *Ultrason Sonochem.*, 2008, 15(4), 548-553; DOI:10.1016/j.ultsonch.2007.06.001
- 23. Kantevari S, Bantu R and Nagarapu L, ARKIVOC, 2006, xvi, 136-148.
- 24. Ilangovan A, Muralidharan S, Sakthivel P, Malayappasamy S, Karuppusamy S and Kaushik M P, *Chem Cent J.*, 2011, **5**, 81.
- Li X J Z, Xie L, Zhao Y and Wang T, Ultrason Sonochem., 2013, 20(6), 1384-1389; DOI:10.1016/j.ultsonch.2013.03.010
- 26. Hasaninejad A, Dadar M and Zare A K, *Chem Sci Trans.*, 2012, **1**(2), 233-238; DOI:10.7598/cst2012.107