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Abstract: In the present work, we have applied group quantitative structure–activity relationships   
(G-QSAR) for exploring the relationship between the structures of a new emerging family of 2-{[2-(1H-
imidazol-1-yl)ethyl]sulfanyl}-1H-benzimidazole derivatives and their antiprotozoal activities. We have 
developed descriptive models, in order to aid in further optimization and development of newer 
antiprotozoal agents containing the benzimidazole pharmacophore. G-QSAR was performed on VLife 
molecular design suite (MDS) 4.5 version software. The predictive power of the QSAR was checked 
through the cross validation technique and also by leaving some compounds as part of external test set 
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Introduction 

Chemoinformatics has been used to perform the tasks of acquiring, storing, retrieving, 
searching, analysing and visualizing chemical information which are required in the drug 
discovery process. In the initial stages of this process, extensive work is carried out to search 
the availability of data of molecules whose chemical structure significantly influences 
biological activity. The data is analysed in terms of its suitability to develop a model that can 
justify variation in activity in terms of physicochemical properties. After confirming the 
suitability of data, statistical tools are applied and relationship between activity with the 
descriptors is generated and termed as Quantitative Structure Activity Relationship (QSAR). 
The statistical methods are regression methods, which can assume linear or non-linear 
relationship. After validation of QSAR models, these are used for predicting biological 
activities of a new set of molecules that have not been synthesized up till now. These new 
molecules in the congeneric series can be generated in terms of virtual combinatorial library 
by choosing different groups at the selected sites of substitution. The generated molecules 
can be screened on the basis of QSAR models for deciding priority for synthesis. Also, 
molecules in the congeneric series can be searched on the basis of template, pharmacophore 
or topomer in the compound databases and then screened for deciding their procurement. 
Thus, QSAR is used to connect the information from molecules with known experimental 
activity to molecules for which newer experiments are yet to be carried out in drug 
discovery project1. In the past, the  descriptors  used for QSAR interrelated the chemical 
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environment and steric properties of groups. These  were considered to be independent of each 
other and their interactions were completely ignored. After introduction of several molecular 
descriptors such as topological, electro-topological and others; the current QSAR models 
generated using these descriptors represent properties of whole molecule rather than contributions 
by individual groups. These models do not clearly specify the site at which modification is 
required. For this purpose, 3D-QSAR models such as CoMFA were employed whose descriptors 
involve steric and electrostatic fields that calculated at the grid points generated around aligned 
set of molecules. But, as the descriptor space is very large, 3D-QSAR models are generated by 
using regression methods such as partial least squares (PLS) method and this can reduce the 
dimensionality. The 3D-QSAR models give us clues for designing new molecules by specifying 
areas along with its steric and electrostatic requirements of the molecules. However, one of the 
major drawbacks of 3D-QSAR method is its dependency on molecular alignment and 
conformers chosen for the alignment. This facet becomes vital when the information of bio-
active conformation is absent or when molecular framework is not rigid.  

 From the above discussion, it is clear that there is a requirement of QSAR method, which 
will allow flexibility to study molecular sites of interest and capture interactions amongst them. 
Hence, we report herein; one such group-based QSAR (G-QSAR) method which allows ease 
of interpretation unlike any conventional QSAR method which could only suggest important 
descriptors but does not reflect the site where it has to be optimized for design of new 
molecules. The proposed method is tested by its application on two different data sets and their 
results are discussed in the following sections. In G-QSAR method, before calculating the 
corresponding fragment descriptors, the fragmentation of each molecule in the dataset is 
carried out with a set of predefined rules. In the existing methods, a predefined fragment (or 
group) is searched in the molecule and then it is used as a descriptor either as an indicator 
variable, their count or corresponding index viz., path count or molecular connectivity index. 
This method considers cross/interaction terms as descriptors to account for the fragment 
interactions in QSAR model while existing methods, such descriptors are not considered2. 

 
Figure 1. Flow chart of G-QSAR methodology 
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 Parasitic infections caused by protozoa still represent a major public health 
problem in developing countries. Infection by protozoa usually produces diarrhea and 
associated symptoms and these protozoa can also penetrate the intestinal mucosa and 
migrate to other organs causing severe damage.  For these diseases, metronidazole and 
many of its analogs have been successfully used as the drugs of choice3 for more than 
40 years; however, their side effects and the development of resistant strains limit their 
use. Hence it is important to have more options of treatment, because of different 
individual responses to drugs. During the last years, an important number of 
benzimidazole derivatives have been synthesized and evaluated as antiprotozoals. This 
increasing database of benzimidazole derivatives has given access to new SAR features 
that can lead to the optimization of benzimidazole derivatives. The synthesis of 19 new 
2-{[2-(1H-imidazol-1-yl)ethyl]sulfanyl}-1H-benzimidazole derivatives has been reported 
in literature. The synthesized derivatives displayed significant antiprotozoal activity 
high activity and selectivity. Pursuing these research consequences we have undertaken 
QSAR study on previously reported derivatives. The aim of the study was to identify 
the molecular properties which influence the antiprotozoal activity. 

Experimental 

A total of 20 2-{[2-(1H-imidazol-1-yl)ethyl]sulfanyl}-1H-benzimidazole derivatives have been 
reported to exhibit antiprotozoal activities4. These were used as the data set in QSAR analysis 
(Table 1). The IC50 (μM) values reported in the literature5 were converted to negative 
logarithmic values to get pIC50 which were used for QSAR study. The molecules were divided 
into the training set (16 molecules) and test set (5molecules) by sphere exclusion (SE) method. 
The structures of the reported molecules were drawn in the 2D draw application of Molecular 
Design Suit (MDS) software. These 2D structures where exported to QSAR Plus window to 
convert 2D structures to 3D structures. After the conversion, structures were subjected to energy 
minimization with the help of MMFF force field and optimized molecules were used to calculate 
the physicochemical and alignment descriptors. In G-QSAR analysis, all the methods distributed 
the compounds in training set of 15 derivatives and test set of 6 derivatives. Different statistical 
methods like multiple linear regression (MLR)6, partial least squares regression (PLS)7 and 
Principal component regression (PCR)8 were employed for model building. 

Table 1. Chemical and biological data of 2-{[2-(1H-imidazol-1-yl)ethyl]sulfanyl}-1H-
benzimidazole derivatives 

Compound No. R1 R2 R3 Actual value pIC50 value(OA) 
35 H H H 6.749 6.74957 
36 H Cl H 6.768 6.768 
37 H Cl Cl 6.852 6.852 
38 CH3 H H 6.826 6.826 
39 CH3 H Cl 6.892 6.8923 
40 CH3 Cl H 6.869 6.869 
41 CH3 Cl Cl 7.016 7.016 
42 H COOCH3 H 6.955 6.955 
43 H COOCH3 Cl 7.138 7.138 
44 CH3 H COOCH3 6.943 6.943 
45 CH3 Cl COOCH3 7.060 7.060 
46 CH3 COOCH3 H 7.111 7.111 



2-{[2-(1H-imidazol-1-yl)ethyl]sulfanyl}-1H-benzimidazole derivatives; R1, R2 & R3 are 
substituents on derivatives, OA is the observed activity 

Results and Discussion 
The various derivatives of 2-{[2-(1H-imidazol-1-yl)ethyl]sulfanyl}-1H-benzimidazole 
belong to the following parent skeleton 

N

N
S

N

N

R2

R3
R  

Interpretation of results  
Model 1 

 

Training set Test set 
 

  

Fitness plot Contribution plot 
Figure 2. Model 1 (MLR method) 
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47 CH3 COOCH3 Cl 7.033 7.033 
48 H OCH2CH3 H 7.144 7.14 
49 H OCH2CH3 Cl 7.003 7.003 
50 CH3 H OCH2CH3 7.144 7.144 
51 CH3 Cl OCH2CH3 7.156 7.156 
52 CH3 OCH2CH3 H 7.118 7.11 
53 CH3 OCH2CH3 Cl 7.00 7.008 

Metronidazole    6.627 6.627 
Albendazole    5.798 5.798 
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 From the above observations, it can be seen that multiple regression (coupled with 
forward variable selection) has led to a statistically significant G-QSAR model. The 
developed G-QSAR model reveals that the descriptor9 R1-EpsilonSS at R1 substitution 
position plays most important role (~38%) and is directly related in determining biological 
activity. The next important factor controlling changes in the activity is the log of partition 
coefficient at R1 substitution. This is R2-XKHydrophilicArea (~33%) which is directly 
proportional to the activity. Lastly, the presence of descriptor R2-SAHydrophobicArea 
(~30%) which is directly proportional to the activity shows the role of electronic property at 
R2 substitution site in determining activity. 

Equation 

PIc50 = 0.0050R1SAHydrophobic area+ 0.0460R1EpsilonSS+0.0055R2XRHydrophilic 
area+6.6555(constant). The equation explains ~75 % (r2 = 0.7587) of the total variance in the 
training set and has an internal (q2) and external (pred_r2) predictive ability of ~59 % and 
~50%; respectively. The Fcal value of 11.5263 shows the statistical significance of 99.99% 
of the model which means that probability of failure of the model is 1 in 10000. In addition, 
the randomization test shows confidence of >99.99% (Alpha R and R2=0.00100) and that 
the generated model is not random and hence is chosen as the QSAR model.  

Model 2 

  
Training  set Test set 
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Figure 3. Model 2 (PCR method) 
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 From the previously mentioned data, it can be seen that the principal component regression 
(coupled with forward variable selection) has led to a statistically significant G-QSAR model. 
This model reveals that the descriptor R2-SAHydrophobicArea at R1 position plays most 
important role (~40%) and is directly proportional in determining biological activity. Another 
factor affecting biological activity is the log of partition coefficient at R1 position. R1-smr 
(~35%) is also found to be directly related to the biological activity. Also, the presence of 
descriptor R2-+ve Potential Surface Area (~23%) confirms the role of electronic property at R2 
substitution site in determining activity and is also directly proportional to the biological activity. 

Equation 

PIc50 = 0.0066R2SAHydrophobic area+ 0.0146R1smr+0.0026R2+vepotential surface 
area+6.5789(constant) .The equation explains ~73% (r2 = 0.7353) of the total variance in the 
training set and has an internal (q2) and external (pred_r2) predictive ability of ~27% and 
~57%; respectively with the Fcal value 16.66. Data shows poor external validation of 27% 
due to which the chances of failure are more and the generated model is not random, hence 
is not chosen as the QSAR model. 

Model 3 

  
Training  set Test set 
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Figure 4. Model 3 (PLS method) 

 Partial least square (coupled with forward variable selection) method has also generated 
a statistically significant G-QSAR model. The developed G-QSAR model reveals that the 
descriptor R1-EpsilonSS at R1 substitution site plays most important role (~42%) and is 
directly proportional in determining biological activity. Also, log of partition coefficient at 
R1 position viz., R2-SAHydrophobicArea (~37%)  is  directly  proportional to the activity.  
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Lastly, the presence of descriptor R2-XKHydrophilicArea (~23%) which is directly 
proportional to the activity shows the role of electronic property at R2 substitution site in 
determining activity. The calculated values of quantum chemical descriptors and predicted 
activity is shown in Table 3. 

Equation 

PIc50 = 0.0067R2SAHydrophobic area+ 0.0404R1EpsilonSS+0.0036R2XRHydrophilic 
area+6.6282(constant). The equation explains ~74 % (r2 =  0.7412) of the total variance in 
the training set and has an internal (q2) and external (pred_r2) predictive ability of ~62 % 
and ~53%; respectively. The Fcal value is 17.1803 which gives the statistical significance of 
99.99% for the model which means that probability of failure of the model is 1 in 10000. In 
addition, the randomization test shows confidence of >99.9999% (Alpha Rand 
R^2=0.00100) that the generated model is not random and hence is chosen as the QSAR 
model. The summary of models with statistical parameters is depicted in Table 2. 

Table 2. Summary of best three models developed along with statistical parameters 

Method r2 q2 F test Pred r2 Variable selection & Coefficient 
MRM 

 
 
 
 

PLS 

0.7587
 
 
 
 

0.7412

0.5958 
 
 
 
 

0.6213 

11.526 
 
 
 
 

17.180 

0.5081
 
 
 
 

0.5306

R2SAHydrophobicArea(0.0050(±0.002) 
R1-EpsilonSS(0.0460(±0.0109) 
R2XKHydrophilicArea(0.0055(±0.0006) 
Constant: 
6.6555 
R2-SAHydrophobicArea(0.0067)               
R1-EpsilonSS(0.0404) 
R2-XKHydrophilicArea(0.0036) 
Constant: 
6.6282 

PCR 0.7353 0.2737 16.664 0.5798 R2-SAHydrophobicArea(0.0066) 
R1-smr (0.0146) 
R2-+vePotentialSurfaceArea(0.0026) 
Constant: 
6.5789 

VC is the variables counts with the value 3 obtained for all the above methods 

Table 3. Calculated values of quantum chemical descriptors and predicted activity of 2-{[2-
(1H-imidazol-1-yl)ethyl]sulfanyl}-1H-benzimidazole by MLR, PLS and PCR methods 

Derivative 
SAHydrophobic 

Area 
EpsilonSS 

XKHydrophilic 
Area 

Predicated 
Value 

51 48.6724 1.3 -0.121106 7.149 
50 50.9416 0.6 -0.120711 7.135 
44 33.1476 0.6 -0.123393 6.998 
45 33.0587 1.3 -0.123302 7.013 
40 28.1386 1.3 0.0943466 6.883 
41 40.5796 1.3 0.266605 6.883 
39 40.5796 0.6 0.266605 6.854 
36 28.1386 1.3 0.0943466 6.883 
53 40.5796 4.2 0.266605 7.073 
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52 28.1386 4.2 0.0943466 7.055 
48 28.1386 4.2 0.0943466 7.056 
49 40.5796 4.2 0.266605 7.063 
42 28.1386 5.2 0.0943466 7.061 
46 28.1386 5.2 0.0943466 7.052 

Albendazole 0 0 0 6.649 
38 b 28.1386 0.6 0.0943466 6.854 
35 b 28.1386 0.6 0.0943466 6.854 
37 b 40.5796 1.3 0.266605 6.883 
43 b 40.5796 5.2 0.266605 7.051 
47 b 40.5796 5.2 0.266605 7.052 

Mebendazoleb 0 0 0 6.6498 

SAHydrophobicArea - hydrophobic surface area, EpsilonSS - hydrogen donor capacity, XKHydrophilic 
Area - hydrophilic surface area, b-test set 

Conclusion 

A group-based quantitative structure activity relationship study was performed on a series of 
2-{[2-(1H-imidazol-1-yl)ethyl]sulfanyl}-1H-benzimidazole derivatives possessing antiprotozoal 
activity10 to quantify and determine those physicochemical  properties that highly influence 
the biological activity. Two dimensional quantitative structure activity relationship         
(2D QSAR) study by means of multiple regression (MR) method was performed on a series 
of 2-{[2-(1H-imidazol-1-yl)ethyl]sulfanyl}-1H-benzimidazole derivatives possessing 
antiprotozoal  activity using molecular design suite (VLifeMDS 4.5)11. This study was 
performed with twenty one compounds (data set) using SE algorithm, random and manual 
selection methods for the division of the data set into training and test sets. Multiple 
regression methodology with stepwise (SW) forward variable selection method was used for 
building the QSAR models. Statistically significant 

  G-QSAR models were generated. Among them most significant model has squared 
correlation coefficient (r2), cross validated correlation coefficient (q2) and predictive 
correlation coefficient (pred_r2) 0.7587, 0.5958 and 0.5081; respectively The second 
model was generated by using PCR method. Among them, the most significant model 
has squared correlation coefficient (r2), cross validated correlation coefficient (q2) and 
predictive correlation coefficient (pred_r2) 0.7353,0.2737 and 0.5798; respectively. The 
third model was generated by using partial least square method PLS. Among them, most 
significant model has squared correlation coefficient (r2), cross validated correlation 
coefficient (q2) and predictive correlation coefficient (pred_r2)0.7412, 0.6213 and 0.5306; 
respectively. R1-EpsilonSS at R1 position, R2-XKHydrophilicArea and R2-SAHydrophobi 
Area are the three descriptors which control the biological activity and are directly 
related to it. In the present study, an attempt has been made to identify the necessary 
structural and substituent sites which can be modified so as to improve the biological 
activity. From the present G-QSAR analysis, three best models were generated among 
which any one can be used for predicting the activity of the newly designed compounds 
in finding some more potent molecules. Finally, it is concluded that the work presented 
here will play an important role in understanding the relationship of physiochemical 
parameters with structure and biological activity. By studying the G-QSAR model one 
can select the suitable substituent for further synthesizing bioactive compounds showing 
maximum potency. 
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