RESEARCH ARTICLE

Synthesis, Spectral Characterization and Kinetic Study of Cu(II) Complex with *N*-Hexahydrocyclopenta[*c*]pyrrol-2(1*H*)-yl carbamoyl-4-methylbenzenesulfonamide

BAL KRISHAN^{*1} and S. A. IQBAL²

¹Department of Chemistry, Saifia Science College, Barkatullah University, Bhopal -462001, India ²Department of Chemistry, Crescent College of Technology, RGPV, Bhopal- 462 00, India *bkrishan.krg@gmail.com*

Received 2 May 2013 / Accepted 7 June 2013

Abstract: Metal complex of anti-diabetic drug, gliclazide was synthesized and characterized using elemental analyses, IR, NMR and thermal analyses technique. The results of conductometric titration using monovariation method indicate that complex is L_2M (2:1) type which was confirmed by Job's method of continuous variation. The complex having the general formula *i.e.* ($C_{15}H_{20}N_3O_3S$) ₂Cu. The geometry of complex is assigned square planner supported by IR and ¹H NMR and propose structure (Scheme 2) for complex. The Freeman-Carroll and Sharp-Wentworth methods have been used to calculate activation energy and thermal stability. Thermodynamic parameters such as free energy change (ΔG), entropy change (ΔS) are also determined on the basis of TG curves and by using data of the Freeman-Carroll method and relative thermal stability of the complex are discussed.

Keywords: Gliclazide, Oral anti-diabetic drugs, Gliclazide, Kinetic parameter

Introduction

Gliclazide (Figure 1) is a sulphonylurea derivatives can exist in keto and enolic form when dissolved in an organic solvent and react with various metal ions to form intensely coloured metal complexes that provide the basis for their use as a sensitive reagent. The thermal degradation study of complexes has become a subject of recent interest. It is important property of complexes, which decides the thermal stability and processability of the complexes. The study of thermal behavior of complexes at different temperature provides important information about its practical applicability. Iqbal et al^{l} , synthesized the metal complexes of gliclazide characterized by FT-IR, elemental analysis and TGA-DTG parameters. The thermal analysis (TGA) was performed at the heating rate of 10°C/min. in nitrogen atmosphere. Wilma *et al*², studied kinetics and thermal decomposition of Cu(II) complex of hydroxyl quinoline-5-sulphonic acid. Thermal data have been analyzed by Freeman-Carroll and Sharp-Wentworth method. Thermal analysis (TGA and DTG) is a typical analytical technique to describe the relationship between physicochemical changes and temperature¹⁻² in order to synthesize complexes having practical applications. There is a need to investigate the effect of heat on complexes in order to establish thermal stability. Idbal et al.,³⁻⁷ have synthesized and characterized complexes of tolbutamide and glibenclamide by FT-IR, elemental analysis and TGA-DTA technique. Thermal studies of complexes were

carried out to determine their mode of decomposition, the activation energy (E_a) , order of reaction (n), entropy change (ΔS), free energy (ΔF). The Freeman-Carroll and Sharp-Wentworth methods have been used to calculate thermal activation energy and thermal stability. However, very little work has been carried out on the synthesis and characterization and thermal degradation studies of the metal complex of gliclazide. Hence in this work we have prepared the complex of Cu(II) with gliclazide drug. The solid complex was characterized using different physicochemical methods, like elemental analysis (C, H, N, S and metal content), IR, NMR and thermal analysis (TGA and DTG).

Figure 1. Structure of gliclazide

Experimental

Ligand-metal ratio

a) Gliclazide 0.005 M solution was prepared by dissolving 1.617g in 100 mL ethanol, and cupric chloride solution was prepared by dissolving 0.426 g in 100 mL of ethanol. 10 mL gliclazide solution was titrated conductometrically against cupric chloride solution taken in burette. Conductance was recorded after each addition with proper stirring at temperature 30 ± 1 °C. Results were plotted between corrected conductance and volume of metal salt. From the equivalent point in the graph, ratio between metal and ligand was noted to be 1:2.

b) Formation of 2:1 (L_2M) ratio was further confirmed by Job's method⁸ of continuous variation as modified by Turner and Anderson⁹ (Table 1 and Figure 2a & 2b). Spectrophotometric studies were conducted using absorbance as index property, from these values the stability constant (log k) and free energy change (ΔF) were also calculated for gliclazide-copper complex.

S.No.	Metal:Ligand	Ab	sorbance	Correcte	d Absorbance
	ratio	0.002M	0.005M	0.002M	0.005M
1	0:12	0.006	0.01	0.00	0.00
2	1:11	0.065	0.095	0.059	0.085
3	2:10	0.112	0.135	0.106	0.125
4	3:9	0.167	0.19	0.161	0.175
5	4:8	0.205	0.260	0.198	0.241
6	5:7	0.185	0.240	0.178	0.220
7	6:6	0.145	0.198	0.138	0.185
8	7:5	0.098	0.123	0.090	0.109
9	8:4	0.090	0.112	0.082	0.099
10	9:3	0.052	0.075	0.044	0.065
11	10:2	0.033	0.043	0.025	0.029
12	11:1	0.021	0.025	0.020	0.019
13	12:0	0.009	0.014	0.00	0.00

Table 1	Gliclazide	with	copper ((Job'	s method)
---------	------------	------	----------	-------	-----------

Synthesis of Complex

The chemicals used in this synthesis were all of Analar Grade Hi-media. A weighed quantity of gliclazide (2 mol) (supplied by Zim laboratory Nagpur, India) was dissolved separately in minimum quantity of 90% ethanol. The cupric chloride solution was prepared by dissolving (1 mole) separately in the same solvent. Ligand solution was added slowly with stirring into the metallic salt solution at room temperature. The pH was maintained between 6.0 and 6.5 by adding

dilute NaOH solution. On refluxing the mixture for 3 h and on cooling the complex separated out, filtered off, washed well with ethanol and finally dried in vacuum and weighed.

Job's Method of continuous variation (Modified by Turner and Anderson)

Instrumentation

The elemental analysis of the isolated complex was carried out using Coleman Analyzer at the Departmental Microanalytical Laboratory CDRI Lucknow. The IR spectra of the ligand as well as of the complex was recorded on Perkin Elemer Spectrometer and ¹H NMR spectra of the ligand and isolated complex was recorded on a Bruker DRX-300 spectrometer and d₆-DMSO was used as a solvent. IR and ¹H NMR spectra recorded in CDRI, Lucknow and IIT Bombay, India.

From stoichoimetry and analytical data (Table 2), the composition of the complex comes out to be $(C_{15}H_{21}N_3O_3S)_2$ Cu, for, which favors 2:1 (L₂M) ratio. The tentative structure (*c.f.* Figure 7) was assigned to complex on the basis of analytical data and IR, NMR.

Results and Discussion

Table 2. Analytic and physical data of gliclazide metal complex

S. No.	Complex	Color	Yield %	m.p °C	$-\Delta F$	log K	Molar α Ω^{-1} c	m ⁻¹ mole ⁻¹		
	(C ₁₅ H ₂₁ N ₃ O ₃ S) ₂ Cu	Maple green	ple 58.79 169 16.6		16.65	12.02	30.1			
1.		M 1174	Analytical data calculated (theoretical), %							
		IVI. VV L.	С		Н	Ν	S	Metal		
		700	50.19	6	5.00	10.47	9.00	7.99		
		/08	(50.50) (6	5.01)	(11.47)	(8.47)	(7.75)		

Infra-Red Spectra Studies

The IR spectra of ligand and isolated complex (Figure 3) were scanned within the range 4000-400 cm⁻¹. Assignments (Table 3) of the infrared spectral bands are based on literature. IR spectrum shows important bands due to v(M-O) 400-600 cm⁻¹, v(Ar-S) 700-800 cm⁻¹, v(-S-N) 1085±20 cm⁻¹, v(SO₂-N) 1120±20 cm⁻¹, v(C-N) 1210±20 cm⁻¹, v(S=O) 1340±20 cm⁻¹, v(C=O) 1710 cm⁻¹, v(NH-stretch) 3274±20 cm⁻¹. The proposed structure for the isolated complex is also supported by IR absorption, C.N.Rao¹⁰, Bellamy ¹¹ and Weissberger¹²

¹H NMR Studies

¹H NMR spectral data are given in Table 4. It is observed that the singlet due to the imide (NH) proton around $\delta 8.033$ in the spectrum of the ligand but disappeared in the spectra of NH group in

the complex molecule due to formation of M-O band. This is also confirms the deprotonation of imide (NH) group through enolization (the appearance of >C=N stretching band observed in IR spectra). Other features of NMR spectrum were the aromatic presence of unresolved multiplet suggestive protons¹³⁻¹⁷.

Figure 3. IR spectra of gliclazide-copper complex

Thermal study of gliclazide-copper complex

In the present investigation, the weight loss of the complex was calculated within corresponding temperature ranges. The obtained data are listed in Table 5. The complex is thermally decomposed in three decomposition steps within the temperature range of 50-600 °C. The TGA/DTA curves for the complexes are shown in Figure 4.

Table 3. Specific IR assignment of gliclazide(ligand) and gliclazide-copper complex

Pure drug (Gliclazide)	Gliclazide-Cu complex
632 cm^{-1} (s), 668 cm^{-1} (vs), 1087 cm^{-1} (vs),	547 cm ⁻¹ (s), 753 (vs), 1122 cm ⁻¹ (s), 1216 cm ⁻¹ (vs),
$1240 \text{ cm}^{-1}(\text{vs}), 1348 \text{ cm}^{-1}(\text{vs}), 1710 \text{ cm}^{-1}(\text{vs}),$	$1622 (vs) 1337 cm^{-1}(s), 1524 cm^{-1}(s) 2947 cm^{-1}(m),$
2867 cm^{-1} , 2950 cm^{-1} (vs), 3274 cm^{-1} (vs),	$3021 \text{ cm}^{-1}(\text{s}), 3674 \text{ cm}^{-1}(\text{m})$
vs = very strong, s = strong	vs = very strong, s = strong, m = medium
Table 4. NMR Assignments	s of gliclazide-copper complex
(C ₁₅ H ₂₁ N ₃ O ₃ S) ₂ pure drug Gliclazide	$(C_{15}H_{20}N_{3}O_{3}S)_{2}Cu$
δ8.041 (s,1H,NHCO, J=0.334H _z), δ7.817	δ7.691 (d,1H,NH-CO, J=1H _z), δ7.346 (d,
(d, benzene J=1H _z), δ 7.395(d, benzene,	benzene, J=0.69H _z), δ6.328 (s,SO ₂ -NH,
J=1H _z), δ6.28 (s,SO ₂ NH), δ3.320 (NH-	J=1H _z), δ3.668 (s, NH-CO-Cu, J=0.83H _z),
CO, $J=0.929H_z$), $\delta 2.901(s, CH_3 group)$	$\delta 2.724$ (s,CH ₃ -group attached to benzene,
attached to benzene, J=2.160 H _z), δ 1.388	J=1.26H _z), δ1.608 (q,CH ₃ group, J=5.50H _z),
$(s, CH_3 \text{ group}, J=2.955H_z)$	δ1.009 (CH ₃ group, J=2.03H _Z
anginglat dedaublat tetriplat ang	artrata m-multipla

s=singlet, d=doublet, t=triplet, q=quartrate, m=multiple

The thermoanalytical data are presented in Table 6. In studying the decomposition kinetics methods mentioned in the literature was used in each case the least square plots were drawn. The first few points that did not fall on straight line were discarded. These types of deviations of points are reported in literature by several research workers²⁰⁻²⁹.

Theoretical Consideration

To provide further evidence regarding the degradation system of analyzed compounds, we derived the TG curves by applying an analytical method proposed by Freeman-Carroll²⁷ and Sharp-Wentworth.²⁸

Freeman-Carroll Method

The straight line equation derived by Freeman and Carroll is:

$$\frac{\Delta \log \frac{dw}{dt}}{\Delta \log Wr} = n - \frac{Ea}{2.303 R} \frac{\Delta \frac{1}{T}}{\Delta \log Wr}$$

Where, $\frac{dw}{dt}$ = rate of change of weight with time, Wr = Wc-W, $W_c = Wt$. loss at completion of

reaction, W = Total wt. loss up to time 't', $E_a =$ Energy of activation, n = Order of reaction.

The plot between the term $\frac{\Delta \log \frac{dw}{dT}}{\Delta \log Wr} vs \frac{\Delta \frac{1}{T}}{\Delta \log Wr}$ gives a straight line (Figure 5) from which

slope can be calculated. The energy of activation (E_a) and intercept on Y-axis as order of reaction (n), the change of entropy (ΔS) are also can be calculated.

Sharp-Wentworth Method

Using the Sharp and Wentworth equation:

$$\frac{\Delta \log \frac{dc}{dt}}{(1-c)} = \log \frac{A}{\beta} - \frac{Ea}{2.303R} \frac{1}{T}$$

Where, $\frac{dc}{dt}$ = Rate of change of fraction of weight with change in temperature. β = Linear

heating rate $\frac{dT}{dt}$, a graph was plotted between $\frac{\Delta \log \frac{dc}{dt}}{(1-c)} vs \frac{1}{T}$. We obtained a straight line

(Figure 6) and the energy of activation (E_a) was calculated from its slope.

Figure 5. Determination of order of reaction and activation energy by FC method

Figure 6. Determination of activation energy by SW method

The thermodynamic activation parameters of decomposition process of dehydrate complexes namely activation energy (E_a), Entropy (Δ S) and Gibb's free energy change of decomposition (Δ G°) were evaluated graphically by employing Freeman-Carroll and Sharp-Wentworth relation. The data are summarized in Table 7. The activation energies of decomposition are found to be in the range 54 to 56 kJ mole⁻¹. The high value of activation energies reflects the thermal stability of complex. The entropy of activation is found to have negative values in complex which indicate that decomposition reactions process with lower rate than the normal ones, beside these parameters, in TGA curve (Figure 5), the initial loss with in temperature 20 – 450 °C followed by loss of ligand molecule in the next step within the temperature range \geq 450 °C with the formation of metal oxide as a residue of decomposition.

Table 5. Thermogravimetric data of gliclazide metal complex by Sharp-Wenrworth method												
Temp. °C	Temp °K	$\frac{1000}{T}$	% Mass Loss	Change in <i>Wt</i> . 'c' g	1-c	$\frac{dc}{dt}$	$\log \frac{dc}{dt}$	$\log(1-c)$	$\frac{\log \frac{dc}{dt}}{(1-c)}$	Weight %		
30	303	3.30033	1.381	0.00019	0.99981	0.00036	-3.44273	-0.00008	-3.44338	98.619		
50	323	3.09598	2.928	0.00040	0.99960	0.00057	-3.24651	-0.00017	-3.24780	97.072		
70	343	2.91545	4.752	0.00065	0.99935	0.00075	-3.12209	-0.00028	-3.12411	95.248		
90	363	2.75482	6.499	0.00088	0.99912	0.00089	-3.05055	-0.00038	-3.05325	93.501		
110	383	2.61097	7.842	0.00107	0.99893	0.00100	-2.99942	-0.00046	-3.00262	92.158		
130	403	2.48139	8.928	0.00121	0.99879	0.00113	-2.94832	-0.00053	-2.95191	91.072		
150	423	2.36407	10.064	0.00137	0.99863	0.00128	-2.89309	-0.00060	-2.89705	89.936		
170	443	2.25734	11.414	0.00155	0.99845	0.00146	-2.83590	-0.00067	-2.84032	88.586		
190	463	2.15983	13.007	0.00177	0.99823	0.00172	-2.76460	-0.00077	-2.76951	86.993		
210	483	2.07039	15.239	0.00207	0.99793	0.00213	-2.67264	-0.00090	-2.67819	84.761		
230	503	1.98807	18.666	0.00254	0.99746	0.00256	-2.59115	-0.00110	-2.59774	81.334		
250	523	1.91205	22.575	0.00307	0.99693	0.00295	-2.52985	-0.00134	-2.53764	77.425		
270	543	1.84162	26.213	0.00357	0.99643	0.00328	-2.48401	-0.00155	-2.49290	73.787		
290	563	1.77620	29.356	0.00399	0.99601	0.00355	-2.45015	-0.00174	-2.45997	70.644		
310	583	1.71527	31.94	0.00435	0.99565	0.00374	-2.42724	-0.00189	-2.43783	68.060		
330	603	1.65837	33.869	0.00461	0.99539	0.00390	-2.40885	-0.00201	-2.42001	66.131		
350	623	1.60514	35.443	0.00482	0.99518	0.00405	-2.39225	-0.00210	-2.40384	64.557		
370	643	1.55521	36.875	0.00502	0.99498	0.00420	-2.37703	-0.00218	-2.38901	63.125		
390	663	1.50830	38.224	0.00520	0.99480	0.00435	-2.36200	-0.00226	-2.37435	61.776		
410	683	1.46413	39.58	0.00539	0.99461	0.00448	-2.34843	-0.00235	-2.36114	60.420		
430	703	1.42248	40.865	0.00556	0.99444	0.00464	-2.33339	-0.00242	-2.34643	59.135		
450	723	1.38313	42.283	0.00575	0.99425	0.00480	-2.31835	-0.00251	-2.33177	57.717		
470	743	1.34590	43.768	0.00596	0.99404	0.00488	-2.31180	-0.00259	-2.32565	56.232		
490	763	1.31062	44.602	0.00607	0.99393	0.00493	-2.30734	-0.00264	-2.32143	55.398		
510	783	1.27714	45.139	0.00614	0.99386	0.00495	-2.30544	-0.00268	-2.31969	54.861		

Chem Sci Trans., 2014, 3(3), 909-918

Temp. °C	% Mass loss	Change in Wt., g	Time, s	$\frac{dw}{dt}$	$\log \frac{dw}{dt}$	Wr = Wc-W	log Wr	Τ, Κ	$\frac{1}{T}(K^{-1})$	$\frac{\log \frac{dw}{dt}}{\log wr}$	$\frac{\log \frac{dw}{dt}}{\log wr}$	$\alpha = \frac{wt}{wc}$	$g\alpha = \frac{1-(1-\alpha)^{1-n}}{1-n}$	$T^{3} \ge 10^{-7}$	$\frac{g(\alpha)}{T^3} 10^7$	$\frac{1}{T} x 10^{-3}$	$\log\!\!\left(\frac{g(\alpha)}{T^3}\right)$
30	1.381	0.00019	90	0.000389	-3.410	0.00599	-2.2226	303	0.00330	1.534	-0.0015	0.0304	0.0309	2.7818	0.0003	3.3003	-108.8234
50	2.928	0.00040	150	0.000627	-3.203	0.00578	-2.2381	323	0.00310	1.431	-0.0014	0.0645	0.0666	3.3698	0.0013	3.0960	-70.2398
70	4.752	0.00065	210	0.000852	-3.070	0.00553	-2.2572	343	0.00292	1.360	-0.0013	0.1047	0.1104	4.0354	0.0029	2.9155	-48.0044
90	6.499	0.00088	270	0.001023	-2.990	0.00529	-2.2763	363	0.00275	1.314	-0.0012	0.1431	0.1542	4.7832	0.0046	2.7548	-34.6226
110	7.842	0.00107	330	0.001161	-2.935	0.00511	-2.2915	383	0.00261	1.281	-0.0011	0.1727	0.1892	5.6182	0.0058	2.6110	-26.4437
130	8.928	0.00121	390	0.001309	-2.883	0.00496	-2.3043	403	0.00248	1.251	-0.0011	0.1966	0.2185	6.5451	0.0066	2.4814	-20.8855
150	10.064	0.00137	450	0.001485	-2.828	0.00481	-2.3180	423	0.00236	1.220	-0.0010	0.2216	0.2500	7.5687	0.0073	2.3641	-16.6010
170	11.414	0.00155	510	0.001692	-2.772	0.00462	-2.3349	443	0.00226	1.187	-0.0010	0.2514	0.2887	8.6938	0.0083	2.2573	-13.1039
190	13.007	0.00177	570	0.001985	-2.702	0.00441	-2.3558	463	0.00216	1.147	-0.0009	0.2865	0.3364	9.9253	0.0097	2.1598	-10.2373
210	15.239	0.00207	630	0.002436	-2.613	0.00410	-2.3868	483	0.00207	1.095	-0.0009	0.3356	0.4072	11.2679	0.0121	2.0704	-7.6705
230	18.666	0.00254	690	0.002945	-2.531	0.00364	-2.4391	503	0.00199	1.038	-0.0008	0.4111	0.5267	12.7264	0.0170	1.9881	-5.2213
250	22.575	0.00307	750	0.003413	-2.467	0.00311	-2.5078	523	0.00191	0.984	-0.0008	0.4972	0.6828	14.3056	0.0237	1.9120	-3.2795
270	26.213	0.00357	810	0.003816	-2.418	0.00261	-2.5831	543	0.00184	0.936	-0.0007	0.5773	0.8538	16.0103	0.0308	1.8416	-1.9191
290	29.356	0.00399	870	0.004146	-2.382	0.00218	-2.6608	563	0.00178	0.895	-0.0007	0.6465	1.0292	17.8454	0.0373	1.7762	-0.9913
310	31.94	0.00435	930	0.004391	-2.357	0.00183	-2.7371	583	0.00172	0.861	-0.0006	0.7034	1.2009	19.8155	0.0426	1.7153	-0.3698
330	33.869	0.00461	990	0.004592	-2.338	0.00157	-2.8042	603	0.00166	0.834	-0.0006	0.7459	1.3515	21.9256	0.0460	1.6584	0.0161
350	35.443	0.00482	1050	0.004776	-2.321	0.00136	-2.8679	623	0.00161	0.809	-0.0006	0.7806	1.4941	24.1804	0.0482	1.6051	0.2762
370	36.875	0.00502	1110	0.004950	-2.305	0.00116	-2.9353	643	0.00156	0.785	-0.0005	0.8121	1.6444	26.5848	0.0502	1.5552	0.4726
390	38.224	0.00520	1170	0.005125	-2.290	0.00098	-3.0101	663	0.00151	0.761	-0.0005	0.8418	1.8106	29.1434	0.0523	1.5083	0.6281
410	39.58	0.00539	1230	0.005291	-2.276	0.00079	-3.1010	683	0.00146	0.734	-0.0005	0.8717	2.0119	31.8612	0.0550	1.4641	0.7657
430	40.865	0.00556	1290	0.005475	-2.262	0.00062	-3.2092	703	0.00142	0.705	-0.0004	0.9000	2.2505	34.7429	0.0583	1.4225	0.8823
450	42.283	0.00575	1350	0.005667	-2.247	0.00042	-3.3718	723	0.00138	0.666	-0.0004	0.9312	2.6067	37.7933	0.0642	1.3831	1.0191
470	43.768	0.00596	1410	0.005771	-2.239	0.00022	-3.6522	743	0.00135	0.613	-0.0004	0.9639	3.2148	41.0172	0.0756	1.3459	1.1975
490	44.602	0.00607	1470	0.005838	-2.234	0.00011	-3.9616	763	0.00131	0.564	-0.0003	0.9823	3.8765	44.4195	0.0857	1.3106	1.3073
510	45.139	0.00614	1530	0.005871	-2.231	0.00004	-4.4414	783	0.00128	0.502	-0.0003	0.9941	4.8845	48.0049	0.1012	1.2771	1.4296

Table 6. Thermogravimetric data of gliclazide metal complex by Freeman-Corroll method

916

Che

				-	-		
Complexes	Decomposition	%Wt.	E _a , J/mole		ΔS	ΔG	
-	Temp. °C	loss	F.C.	S.W.	J/k/mole	kJ/mole	n
(C15H20N3O3S)2Cu	40-510	45	54.89	56.48	-77.31	23.08	0.55

Table 7. Thermal analyses result of gliclazide complex.

For supporting the proposed structure of copper-gliclazide complex, initially Job's method of continuous variation as modified by Turner and Anderson was conducted which indicate 2:1 ligand:metal ratio of the complex, moreover stability constant and free energy change was also calculated. Analytical data (*c.f.* Table 2) agrees to the molecular formula $(C_{15}H_{20}N_3O_3S)_2Cu$. Thermal analysis of complex has been studied by giving their relative thermal stability. Applying the Sharp-Wentworth and Freeman–Corroll methods energy of activation (E_a), kinetic parameter *viz.* ΔS , ΔG and order of reaction (n) were determine by applying Freeman-Corroll method.

Figure 7. Proposed structure for gliclazide-copper complex

Acknowledgement

The author is thankful to the principal of Saifia Science College, Bhopal and Principal of Crescent College of Technology, Bhopal, for providing all necessary facilities and I.I.T., Bombay for providing IR and NMR spectra, C.D.R.I, Lucknow for providing analytical data.

References

- 1. Bal Krishan, Neeti Rathor and Iqbal S A, *International Journal of Theoretical and Applied Sciences*, 2013, **5(1)**, 138-144.
- 2. Wilma Cyril, Suresh Kumar and Shobhna D, Orient J Chem., 2011, 27(4), 1653-1658.
- 3. Bal Krishan, Om Prakash and E H EL-Mossalamy, Orient J Chem., 2013, 29(1), 381-388.
- Neeti Rathore and Bal Krishan, *Bioscience Biotechnology Research Asia*, 2013, 10(1), 479-487.
- 5. Iqbal S A, Sibi Jose and Ishaq Zaafarany, Orient J Chem., 2012, 28(1), 613-618.
- 6. Bal Krishan and Ishaq Zaafarany, Orient J Chem., 2013, 29(4), 1571-1577.
- Md Tawkir, Iqbal S A, Bal Krishan and Ishaq Zaafarany, Orient J Chem., 2011, 27(2), 603-609.
- 8. Job P Annales de Chimie., 1928, 10, 113.
- 9. Turner S E and Anderson R C, J Am Chem Soc., 1949, 71, 912.
- Rao C N R, Chemical Applications of Infrared Spectroscopy, Academic Press, Newyork, London, 1963.
- 11. Bellamy L J, The Infrared spectra of complex molecules. Matheun and Co.Ltd. 1954,
- 12 Weissberger A, Techniques of Organic Chemistry:Chemical Application of Spectroscopy, Interscience Publishers, New York, 1956.
- 13. Slichter C P, Principles of magnetic resonance, 1963.
- 14. Akit J W, NMR and Chemistry- An introduction to nuclear magnetic resonance spectroscopy, Champan and Hall: 2nd Review; 1973, 400.

- 15 Siewers R E, Nuclear magnetic resonance shift reagents academic, New York, 1973.
- 16. Neeti Rathore and Bal Krishan, Orient J Chem., 2013, 29(3), 1001-1008.
- 17. Farhana, Afridi, Iqbal S A and Javed Hasan, Orient J Chem., 2010, 22(1), 195-197.
- 18. Madhusudhayan P M, Krishan K and Ninan K N, *Thermochim Acta.*, 1986, **97**, 189.
- Pandey R N, Nag A K, Prasashti Pandey and Sanjay K Sing, Orient J Chem., 2010, 26(1), 109-112.
- 20. Rai B K and Sateydev Singh, Orient J Chem., 2010, 26(3), 989-994.
- Birendra Kumar, Kiran Kumar Prasad and Sanjay Kumar, Orient J Chem., 2010, 26(4), 1413-1418.
- Subi A AL-Jibori, Ibrahim F Waheed and Alif Al-Samoraie, Orient J Chem., 2012, 28(1), 257-262.
- 23. Rehman F and Samya Majraj, Orient J Chem., 2012, 28(1), 581-585.
- 24. Alhadi A A, Shaker S A, Yehe W A, Ali H M and Mahmood A A, *Orient J Chem.*, **27(4)**, 2011, 1437-1442.
- 25. Freeman E S and Correl B, J Phys Chem., 1958, 62(4), 394-397.
- 26. Sharp J P and Wentworth S A, Anal Chem., 1969, 41(14), 2060-2062.
- 27. Singru R N, Arch.Appl.Sci. Res., 2011, 3(5), 309-325.
- 28. Rahangdale S S and Gurnule W B, *Chem Sci Trans.*, 2013, **2(1)**, 287-293; DOI:10.7598/cst2013.312
- 29. Bal Krishan and Iqbal S A, J Chem., 2014, p10; DOI: 10.1155/2014/378567