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Abstract: In this article we have considered the effect of a magnetic field, the Zeeman effect, 
nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) on nuclei with spin S 
 ½ looked. Then energy levels, transition frequencies and the energy spectra for the nuclear spins 
have specified. After using the group definition SU(2), SU(3), SU(4), SU(N) OR SU(2S+1), In 
quantum mechanics and quantum computation the range nuclear energy levels sin to one qubit, 
qutrit and qudit assign. We have defined the quantum states. 
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Introduction 

Nuclear quadrupole resonance (NQR) uses radio-frequency (RF) magnetic fields to induce 
and detect transitions between sublevels of a nuclear ground state, a description that also 
applies to nuclear magnetic resonance (NMR). NMR refers to the situation where the 
sublevel energy splitting is predominantly due to a nuclear interaction with an applied static 
magnetic field, while NQR refers to the case where the predominant splitting is due to an 
interaction with electric field gradients within the material. So-called “pure NQR” refers to 
the common case when there is no static magnetic field at all. The beginning of NQR in 
solids dates back to the beginnings of NMR in the late 1940s and early 1950s1. The first 
NQR measurements reported for a solid were by Dehmelt and Kruger using signals from 
35Cl in transdichloroethylene2. An excellent early summary of NQR theory and technique 
can be found in the 1958 book by Das and Hahn3.  Several  more  recent  summaries can be  
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found listed at the end of this chapter. Due to practical limitations, discussed below, NQR has 
not grown to be nearly as common as NMR, and is usually considered a tool for the specialist. 

 As is the case for NMR spectroscopy, the primary goal for NQR spectroscopy is to 
determine nuclear transition frequencies (i.e., energies) and/or relaxation times and then to 
relate those to a property of a material being studied. That property may simply be the 
sample temperature, for use as an NQR thermometer4,5, or even whether or not a sample is 
present when NQR is used for materials detection6

. 

 On the other hand, NQR is also used to obtain detailed information on crystal symmetries 
and bonding, on changes in lattice constants with pressure, about phase transitions in solids, 
and other properties of materials of interest to solid state physicists and chemists. 

 As will be seen in more detail below, in order to use NQR spectroscopy one must have 
available an isotope with a nuclear spin I > ½, which has a reasonably high isotopic abundance 
and which is at a site in a solid that has symmetry lower than tetragonal. The most common 
NMR isotopes, 1H, 13C, and 15N cannot be used since they have a nuclear spin ½. 

Nuclear quadrupole energy levels - Classical treatment7 
Consider a nucleus of spin 1 ≥ 1  surrounded by an asymmetric electric field which, for 
simplicity, has axial symmetry; with two Cartesian  coordinate systems, I: x y z fixed in space, 
and x' y' z' fixed on the nucleus. The z' axis is the nuclear spin axis and the y and y' axes are 
coincident. The origin of both coordinate systems is at the center of mass of the nucleus. 

 The energy of interaction, E, between the nucleus and the external electric field is the 
product of the charge of the nucleus and V, the potential due to the field. Since the nucleus cannot 
be treated as a point charge, the energy term must be integrated over the nuclear volume.  

 VdE N
                                                            (1) 

Where N is the charge density of the nucleus and is a function of dv, a volume element in 
the nucleus. The potential can be expanded a power series about the origin, thus: 

                                (2) 
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 The above derivation, based on the treatment by Dehmelt8, gives a good physica1 
interpretation of the energy levels. However, a more generalized form of the Hami1tonian is 
necessary to include, for example, the effect of axial asymmetry of the electric field. Such a 
Hamiltonian will now be derived quantum mechanically. 

Quantum mechanica1 derivation of the quadrupo1e Hami1tonian 
The Hami1tonian for the interaction between the nuclear quadrupole moment and the field 
gradient caused by charges tota11y externa1 to the nucleus is given by the product of two 
tensors; , the quadrupo1e9,10. Moment tensor, and , the e1ectric field gradient tensor.  

                                                                         (4) 
 These tensors can be treated as simp1y third order square matrices, which have each five 
independent components because of symmetry. The Hami1tonian matrix components are  
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derived from  and  using the ru1es, of matrix multiplication. Moment tensor, and the 

e1ectric field grad1ent tensor.  

                                                       (5) 
 In this formulation of the Hamiltonian there are six non-zero components of the EFG 
tensor (Electric Field Gradient tensor). Without losing any generality a set of coordinates 
can be chosen so that all off-diagonal terms of the EFG tensor vanish. These axes are termed 
the principal axes of the electric field gradient. Thus it is always possible to write the 
Hamiltonian in terms of the principal axes as: 

                               (6) 
By convent the principal axes are selected so that: 
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zz

yyxx

v

vv 
                                                                     (8)     

 Where, η the asymmetry parameter, measures the deviation of the electric field from 
axial symmetry, along the principal z axis. From equations it is apparent that η is a unit1ess 
quantity and can vary from zero to one. It is frequent1y reported as a percent. From 
equations the Hamiltonian can be expressed as: 

 

                                               (9) 
Energy levels and transition frequencies 

In the case of axial symmetry,  = 0, the pure quadrupole Hamiltonian is easily diagonalized 
using eigen functions of the operator Iz with quantum number m = –I, –I + 1, …, I –1, I. The 
resulting 2I +1 energy levels are given 
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 In this case m is a good quantum number and the usual magnetic dipole transition rules 
apply, m = 0, ±1. Defining 
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Where h is Plank’s constant, the allowed transition frequencies are given by 

11,;)12(1.  mmmQmm                                                    (12) 

 For the more general case of arbitrary, closed form solutions are known only for I = 1 
and I = 3/2. Due to the symmetry of the Hamiltonian, all the energy levels are doubly 
degenerate for half-integer spin nuclei. For integer spin nuclei, of which there are very few 
in practice, there are an odd number of levels and the degeneracy is broken. Furthermore, 
since the Eigen functions of Iz are not, in general, energy Eigen functions, additional 
transitions are often allowed. 
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Nuclear magnetic resonance 
The energy of a nuclear moment in a magnetic field, according to E=-µ.B, is given by11     

BmyE IImI                                                                                             (13) 

 For nucleus of spin I, the energy of a nucleus in a magnetic field is split into 2I + 1 
Zeeman levels. A proton and other nuclei with spin 

2

1 , have just two possible levels:   
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 Figure 1 shows the energy of a proton as a function of magnetic field. In zero field (B = 
0), the two spin states are degenerate. In a field B, the energy splitting corresponds to a 
photon of energy where, 

                                                            
known as the Larmor frequency of the nucleus. For the proton in a field of  T, , 

as the proton spin orientation flips from +1/2 to -1/2 (Figure 1). This transition is in the radio 
frequency region of the electromagnetic spectrum. NMR spectroscopy consequently exploits 
the technology of radio wave engineering. 

 
Figure  1. Energies of spin ½ nucleus in magnetic field showing NMR transition at Larmor 
frequency L 

Effect of a Magnet Field - the Zeeman Effect 
When an external magnetic field, H, is applied to the system making an angle θ with the 
symmetry axis of the EFG, and azimutha1 angle ϕ for a particu1ar set of x and y axes, the 
total Hami1tonian for the system is 

 
The quadrupole Hamiltonian is the same as that given previously in equation (26) and 12-13 

 
Whence 

 

 
Energy level for spin I = 1 (2H, 14N...) 
There are only four known stable nuclei with integer spin: 2H, 6Li and 14N all with I = 1. For 
spin 1, the three energy levels are (Figure 2): 

(16) 

(17) 

(18) 

(19) 

(20) 
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and all three possible transition frequencies are allowed (Figure 3 & 4).  

 
1D NMR spectrum of a single crystal or a liquid crystal 

 
Figure 2. Energy level: Powder line shape for spin I = 1 (2H, 14N...) 

 

 
Figure 3.The shape depends on  whereas the width depends on  . 

 
Figure  4.  14N spectrum of Pb(NO3)2at 14.1 T and r = 6 kHz using 16000 scans17 

(21) 

(22) 
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Spin 3/2 
Much of the NQR work in the literature is for spin 3/2 nuclei, which have two doubly 
degenerate energy levels (Figure 5), 

 
and hence only one (non-zero frequency) transition, 

 

 
Figure  5. Energy level   1D NMR spectrum 

Other half-integer spins 
Exact solutions are not known for I > 3/2. Tabulated results can be used 14or it is now quite 
easy to diagonalizable the Hamiltonian numerically. Expansions valid for smaller values of 
   are also available15, 16. Results of numerical computations for half-integer spins 5/2, 7/2, 
and 9/2 are shown in Figure 6 & 7. As is customary, the levels are labeled according to the 
largest component of the wave function, though m is only a good quantum number when  
= 0. In addition, when   = 0 virtually all possible transitions are allowed though many are 
extremely weak. This is similar to what occurs for 10B, mentioned above. The dotted lines in 
Figure 6 & 7 indicate some of these weaker transitions, which are not allowed at all when  
= 0  but which may be usable for large . Those weaker transitions are rarely used in practice 
but can be helpful when disentangling spectra observed for samples with multiple sites having 
large .When  = 0  it is possible, with some effort, to obtain exact solutions for half-integer 
spins up to I = 9/2. The resulting energy levels for these

 
I
 
are, in units of hQ. 

 
1D spectra for spin I ≥ 5/2: 

 
Figure  6. 55Mn (I = 5/2) 1D spectrum of KMnO4

17Zeeman , Zeeman+quadrupole 

(23) 

(24) 

(25) 
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Figure 7.  1D spectra for spin I ≥ 5/2 

Group Definition 
SU(2) is the group of all 2x2 unitary matrices with determinant 1, elements are Complex. 
SU(3) is the group of all 3x3 unitary matrices with determinant 1, and SU(n) is the group of 
all n x n  unitary matrices with determinant 1 elements are complex. 
Unitary matrix U,  U†U = I 
SU(2) dim=3; SU(3) dim=8  and SU(n) groups have dimension n2 - 1 

Qubit and SU(2) and the Pauli Matrices 
A qutbit  where, ,  is a state 

vector in the Hilbert space of states H(2) of a 2-level system. It is spanned by an 
orthonormal basis  which in matrix notation reads 

 

The infinitesimal generators of SU(2) are  where 1, 2, and 3  and  are the Pauli 

matrices. The Pauli matrices are Hermitian, that is, they have real eigen values, and traceless 

 
For a spin 1/2 particle, like an electron or a proton… and  

Pauli Matrices Commutation 
The Pauli matrices do not commute physically this is because one cannot simultaneously 
measure spin in more than one direction mathematically this is because SU(2) is non- 
Abelian. The commutation relation is: 

 
Qutrit and SU(3) and the Gell-Mann Matrices 
A qutrit   

where, ,  is a state vector in the Hilbert 

space of states H(3) of a 3-level system. It is spanned by an orthonormal basis 
 which in matrix notation reads 

(26) 

(27) 
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By analogy to SU(2), SU(3) has infinitesimal generators iλi where λi are the Gell-Mann 
matrices. The Gell-Mann matrices are a generalization of the Pauli matrices and they have 
similar properties. There are eight 3 X 3 matrices which can be a representation of the 8 
gluons that mediate. Quantum chromo dynamics (QCD), also known as the strong force. 
These matrices act on vectors with three elements that represent the three color charges 
associated with the strong force. 

Gell-Mann Matrices 
Where  is a real 8-vector, and components of  are the (Hermitian, traceless) Gell Mann 

matrices 

 
 

For a spin 1 particle, like:  

Qudit and SU(4)…. SU(n) 
A qutrit  

where ,  is a state vector in 

the Hilbert space of states H(4) of a 4-level system. It is spanned by an orthonormal basis 
 which in matrix notation reads 

  
Where Ti are generators of SU(4) group that related to the following 15 matrices. 
For a spin 3/2 particle, like  

A qudit where ,  is a state vector in the 

Hilbert space of states H(n) of a n-level system. It is spanned by an orthonormal basis 
 which in matrix notation reads 

  
0  

Where Mi are generators of SU(n)or SU(2S+1) group that related to the following 
1)12( 2 S  matrices. 

For a spin ≥ 5/2 particle, like: 
27Al, 17O, 25Mg, 47Ti, 55Mn, 86Rb,… for I =5/2 and 
43Ca, 45 Sc, 49Ti, 55Mn, 253Es…for I = 7/2 and  
87Sr, 93Nb,… for I = 9/2 

Conclusion 
The reviews of this article NMR and NQR Nuclears S  ½ . This conclusion is reached. The 
energy spectra of these nuclei can be identified. And as it isqubit, qutrit and qudit Introduced 
on a quantum computer. Example qubit For a spin ½ Nuclears, an electron or a proton…like 

(28) 

(29) 

(30) 

(31) 
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1H, 13C, 15N, 31P… for I = ½ and Forqutrit a spin 1 Nuclears,  
Like:  2H, 6Li, 14N, … for I = 1 and  Forqudit a spin 3/2 Nuclears,  
Like: 7Li, 11B, 23Na, 33S, 37.35Cl,… for I = 3/2 and for a spin ≥5/2 Nuclears 
Like: 27Al, 17O, 25Mg, 47Ti, 55Mn, 86Rb,… for I = 5/2 and 
43Ca, 45Sc, 49Ti, 55Mn, 253Es…for I = 7/2 and  
87Sr, 93Nb,… for I = 9/2 
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