RESEARCH ARTICLE

Chelating Behaviour of Dihydrothieno[3,4, d] Pyridazine Derivatives with Some Lanthanide and Actinide Metals

NADIA AHMED ABDALLA

Chemistry Department, Faculty of Science, Aswan University, Aswan-81528, Egypt nadia_201071@yahoo.com

Received 21 August 2015 / Accepted 2 September 2015

Abstract: Coordination compound formed by the interaction of Dihydrothieno[3,4-d]pyridazine with La(III), Ce(III), Sm(III), Th(IV) and UO₂(II) are prepared and characterized by elemental analysis, IR, ¹H NMR Mass spectra and thermal analysis. The analysis data indicate that the ligand acts as bidentate on chelation, thermogravimetric analysis confirm the presence of coordinates water. The IR spectra indicate that coordination takes place through the nitrogen of amino group and C=O group of pyridazine ring. Antimicrobial activity of selected compounds against some bacterial strains was tested and confirm the antimicrobial activities of the ligand increase on coordination with the metal ion.

Keywords: Dihydrothieno Pyridazine, Complexes, IR, ¹H NMR, Mass Spectra, Thermal analysis, Antimicrobial activity

Introduction

Recently pyridazine and thienopyridazine compounds have been reported to possess varied biological activities such as antimicrobial¹, antihypertensive^{2,3}, anti-inflammatory⁴, antifungal activities⁵, antimalarials⁶⁻¹⁴. Pyridazinone nucleus has been extensively studied in the search for new and selective medicinal agents as drugs acting on the cardiovascular system¹⁵. Furthermore, a number of thienopyridazines have been claimed to possess interesting biological and pharmacological activities such as, anticancer¹⁶, useful as oxidase inhibitor¹⁷⁻¹⁸. Complexation of thienopyridazine with transition and rare earth metals have been studied¹⁹⁻³⁶.

Experimental

All the chemicals used were of AR or BDH grade. Stock solutions $(1.0 \times 10^{-3} \text{ mol dm}^{-3})$ of the azo compounds and metal salts LaCl₃.7H₂O, Ce(NO₃)₃.6H₂O, Sm(NO₃)₃.6H₂O Th(NO₃)₄. 5H₂O and UO₂(NO₃)₂. 6H₂O are prepared by dissolving the accurate weight of the crystallized product in pure absolute ethanol. The thienopyridezines compound was

prepared according to references described earlier²⁸. The ligands were prepared by condensation of ethyl cyanoacetate with ethylarylhydrazone -3-oxo-butyrate (**1a-c**) in presence of ammonium acetate. These compounds(**2a-c**) reacted with elemental sulphur in refluxing and acatalytic amount of triethylamino were added. The reaction mixture was heated at reflux for 30 minute, the solid product (**3a-c**) formed was collected by filtration and crystallized from ethanol yield (89%) yellow crystals.

The ligands used are ethyl 5-amino-3-(o-aminotoluene)-4-oxo-3,4-dihydrothieno[3,4-d]pyridazine-1-carboxylate (L₁) and ethyl 5-amino-3-(4-nitrophenyl)-4-oxo-3,4-dihydrothieno[3,4-d]pyridazine-1-carboxylate (L2). In the preparation metal complexes (**4a-c**), the metal and the ligand were combined in 1:1metal:ligand ratio in the case of La(III), Ce(III), Sm(III), Th(IV) and UO₂(II) using required quantities of ethanol so as effect the solubility of the metal salts and ligand. The contents were refluxed on a hot water bath for 1 h and the solid that separated was filtered and dried over silica gel (Scheme 1). The chelates were analysed for their carbon, hydrogen and nitrogen contents. The results of analysis are given in Table 1. Conductance measurements on the complexes were made in DMF at 1× 10⁻³ mol dm⁻³.

Table 1.	. Physical	l properties,	analytical	data, fo	ormula	weight	(F.W.)	and n	nolar	conducta	ance
$(\Lambda \text{ ohm}^{-1})$	¹ cm ⁻¹ mo	ol ⁻¹) of the pi	repared con	nplexes	5						

~ .		Fc	F.W.			
Compound	Molecular Formula	С	Н	Ν	Found	$\Lambda_{\rm M}$
L1 ligand	$C_{16}H_{16}N_4O_3S$	55.39(55.81)	5.04(4.65)	15.97(16.28)	344	-
L1-La complex	$C_{16}H_{16}N_4O_3S(Cl_3)La.7H_2O$	25.99(26.84)	4.6(4.19)	7.49(7.83)	715.40	6.42
L1-Ce complex	C ₁₆ H ₁₆ N ₄ O ₃ S(NO ₃) ₃ Ce6H ₂ O	24.42(24.67)	4.19(3.60)	11.51(12.59)	778.12	6.18
L1-Sm complex	$C_{16}H_{16}N_4O_3S(NO_3)_3Sm.6H_2O$	24.50(24.35)	4.55(3.55)	11.60(12.43)	788.40	19.06
L1- UO ₂ complex	C ₁₆ H ₁₆ N ₄ O ₃ S (NO ₃) ₂ UO _{2.} 6H ₂ O	22.85(22.69)	4.90(3.31)	9.77(9.93)	846.03	7.66
L1-Th complex	$C_{16}H_{16}N_4O_3S(NO_3)_4Th_5H_2O_5$	20.63(21.01)	2.67(2.84)	12.35(12.25)	914.04	7.02
L2 ligand	$C_{15}H_{12}N_4O_5S$	49.96(50.00)	3.01(3.33)	15.40(15.55)	360	-
L ₂₋ La complex	C15H12N4O5S LaCl3	30.52(29.73)	1.96(1.98)	10.20(9.25)	605.41	12.10
L ₂₋ Ce complex	C ₁₅ H ₁₂ N ₄ O ₅ S(NO ₃) ₃ Ce. 3H ₂ O	25.23(24.32)	3.31(2.43)	14.01(13.24)	740.12	12.99
L ₂₋ Sm complex	C ₁₅ H ₁₂ N ₄ O ₅ S(NO ₃) ₂ Sm.6H ₂ O	24.61(24.25)	2.92(3.23)	10.98(11.31)	742.40	8.68
L ₂₋ UO ₂ complex	C ₁₅ H ₁₂ N ₄ O ₅ S(NO ₃) ₂ UO _{2.} 3H ₂ O	21.83(22.28)	2.76(2.23)	12.52(10.40)	808.03	6.72
L ₂₋ Th complex	$C_{15}H_{12}N_4O_5S(NO_3)_4Th_{}H_2O$	19.65(20.98)	2.30(1.83)	13.88(13.05)	858 .03	9.19

Instrumentation

The elemental analysis (C.H.N) were carried out by the Microanalytical Center, Cairo University. The IR (KBr) spectra were determined with Perkin-Elmer Infrared 127B spectrophotometer.

¹H NMR spectra were recorded with a Bruker AMX-250 spectrometer. Mass spectra were recorded on a HPMs 6988 spectrometer. The thermographs of TGA of chelates were carried out by Cairo University; the data obtained were recorded using a Shimadzu TGA - 50H apparatus. The mass spectra were analysed by the EI technique at 80 eV, threshold output = 0.8 V and peak detection = 0.02 V. Molar conductance are performed using WPA CM35 Conductivity Meter cell fitted with platinized platinum electrodes.

Antimicrobial studies

Biological activity (Sensitivity tests) by Kirby-Bauer method

Antimicrobial activity of the tested samples was determined using a modified Kirby-Bauer disc diffusion method³⁷. Briefly, 100 μ L of the test bacteria/fungi were grown in 10 mL of fresh media until they reached a count of approximately 108 cells/mL for bacteria or 105 cells/mL for fung³⁸, 100 μ L of microbial suspension was spread onto agar plates corresponding to the broth in which they were maintained.

Isolated colonies of each organism that might he playing a pathogenic role should be selected from primary agar plates and tested for susceptibility by disc diffusion method³⁹, results in good batch-to-batch reproducibility. Disc diffusion method for filamentous fungi tested by using approved standard method (M38-A) developed by, evaluating the susceptibilities of filamentous fungi to antifungal agents⁴⁰. Disc diffusion method for yeasts developed by using approved standard method (M44-P)⁴¹.

Plates inoculated with filamentous fungi as *Aspergillus flavus* at 25°C for 48 hours; gram(+) bacteria as *Staphylococcus aureus*. *Bacillus subtilis*: gram(-) bacteria as *Escherichia coli, Pseudomonas aeuroginosa* they were incubated at 35-37 °C for 24-48 h and yeast as *Candida albicans* incubated at 30 °C for 24-48 h and, then the diameters of the inhibition zones were measured in millimeters³⁷.

Standard discs of Ampicillin (Antibacterial agent). Amphotericin B (Antifungal agent) served as positive controls for antimicrobial activity but filter discs impregnated with 10 μ l of solvent (distilled water, chloroform, DMSO) were used as a negative control. The agar used is Meuller-Hinton agar that is rigorously tested for composition and pH. Further, the depth of the agar in the plate is a factor to be considered in the disc diffusion method. This method is well documented and standard zones of inhibition have been determined for susceptible and resistant values.

Blank paper disks (Schleicher & Sehuell, Spain) with a diameter of 8.0 mm were impregnated 10 μ of tested concentration of the stock solutions. When, a filter paper disc impregnated with a tested chemical is placed on agar the chemical will diffuse from the disc into the agar. This diffusion will place the chemical in the agar only around the disc. The solubility of the chemical and its molecular size will determine the size of the area of chemical infiltration around the disc if an organism is placed on the agar it will not grow in the area around the disc if it is susceptible to the chemical. This area of no growth around the disc is known as a "Zone of inhibition" or "Clear zone". For the disc diffusion, the zone diameters were measured with slipping calipers of the National Committee for Clinical Laboratory standard⁴². Agar-based methods such as Etest and disk diffusion can be good alternatives because they are simpler and faster than broth-based methods^{43,44}.

The tested compounds (a,1a,2a,3a,4a,5a, equal to L_1 , L_1 -Ce(III), L_1 -La(III), L_1 -Sm(III), L_1 -UO₂(II) and L_1 -Th(IV) and b,1b,2b,3b,4b,5b, equal to L_2 , L_2 -Ce(III), L_2 -La(III), L_2 -Sm(III), L_2 -UO₂(II) and L_2 -Th(IV), respectively were dissolved in DMSO to give a final

concentration (1 mg/mL). Susceptible sterile discs were impregnated by the tested substance (50 μ g/disc) via a means of micropipette. The biological activity for each substance was tested on surface-seeded nutrient agar medium with the prepared susceptible discs.

Results and Discussion

Thienopyridazine ligands containing coordinate sites such as ethyl 5-amino-3-(oaminotoluene)-4-oxo-3,4-dihydrothieno[3,4-d]pyridazine -1-carboxylate (L_1) and ethyl 5amino-3-(4-nitrophenyl)-4-oxo-3,4-dihydrothieno[3,4-d]pyridazine-1-carboxylate (L_2) are good for chelation with La(III), Ce(III), Sm(III), Th(IV) and UO₂(II) metals (Scheme 1). Treatment of metals with ligands L_1 and L_2 in ethanol gave stable six membered ring structure complexes characterized by elemental analysis (Table 1), IR, ¹H NMR, Mass spectra.

IR spectra

The infrared spectral data provide some significant results which support the proposed formula of each complex (Table 2-3) isolated in the present study. The ligand exhibits a broad band at 3431.7 cm⁻¹ and 3377.9 cm⁻¹ for L₁ and L₂ due to vNH₂ which appears lower shifted in the spectra of its complexes. This indicates that the nitrogen of this group is coordinated to the metal. The band that appears around 1631.5 cm⁻¹ and 1628.6 cm⁻¹ in the spectrum of the free ligands L₁ and L₂ respectively, probably attributed to vC=O ring vibration. The shift in frequency of this band on chelation is probably due to the involvement of C=O group in metal chelates ring. A new band appear at 3906, 3848, 3751 and 3676 cm⁻¹ due to presence water molecules in complexes prepared. Since it was known³⁷ that the free water absorb at 3520 cm¹. One can suggest that water molecules are loosely coordinated or exist as molecules of crystallization. Bands observed at 840, 850,876 cm⁻¹ confirm the presence of coordinated lattic water molecules⁴⁵. The hight affinity of H₂O molecules for heavy metals with its small size and high coordination number of latter⁴⁶, frequently leades to inclusion of H₂O molecules in coordination sphere of the metal ion.

Licond		Complexes Assignments					
Ligand	Ce(III)	La(III)	Sm(III)	$UO_2(II)$	Th(IV)		
3431.7	3432.7	3392.2	3426.9	3425.7	3408.6	v(NH ₂) stretching	
2921.6	2923.6	2972.7	2973.7	2923.6	2920.6	v(H-aromatic)	
2360.4	2367.2	2366.2	2364.3	2343.1	2340.2	ν(CH ₃),	
1631.5	1633.4	1629.6	1635.3	1634.4	1634.3	v(C=O) stretching	
-	875.5	876.9	876.5	834.1	809.9	v(OH)	
-	555.4 527.4	597.8	563.1	567.1	609.3	v(MN) stretching	
_	450.3, 461.9, 475.4	457.1	438.7	420.4	425.1	v(MO)	

Table 2. Fundamental Infrared Bands (cm⁻¹) of L_1 and its (1:1) Chelates

Table 3. Fundamental Infrared Bands (cm⁻¹) of L₂ and its (1:1) Chelates

Ligand	-	Con	plexes As	signments		
Liganu	Ce(III)	La(III)	Sm(III)	$UO_2(II)$	Th(IV)	
3477.9	3415.3	3425.9	3426.9	3431.7	3429.8	v(NH ₂) stretching
2928.4	2923.6	2922.6	2920.7	2930.3	2926.5	v(H-aromatic)
1628.6	1652.7	1649.8	1656.6	1651.7	1637.3	v(C=O) stretching
-	850.4	852.4	850.5	852.4	841.8	v(OH)
_	580.5	528.4	692.3	580.4	533.2	v(MN) stretching
-	490.1	448.4, 433.9	430.9	422.3	441.6	$\nu(MO)$

Further, the ligand does not shows up a band at 748 cm⁻¹ due to vC-S^{47,48}, which undergoes does not shifted in complexes indicating that sulphur does not involved in complexation⁴⁹. In the IR spectra of the chelate, an additional band is observed which are not found in the spectra of the free ligands. Of these, the bands around 1030,1031,1032 cm⁻¹ observed in the spectra of UO₂(II), Th(IV), Sm(III) complexes respectively, which are assigned to the coordinated NO₃ group to metal ion^{50,51}. The bands at 1272 cm⁻¹ in the case of La(III) complexes are due to (M-Cl). The UO₂(II) complexes show strong bands at around 928 and 815 cm⁻¹ assignable to v_{as} and v_{sy}(O=U=O) modes respectively⁵², this indicates linearity of O=U=O is retained in complexes. Moreover, the two new bands observed in all complexes under study at 530-580 cm⁻¹ and 422-490 cm⁻¹ assigned to vM-N and vM-O stretching mode respectively^{53,54}.

¹H NMR Spectra

The ¹H NMR Spectra of the free ligand signal L₁ and L₂ are appearing at δ 6.86 and δ 7.67 ppm respectively which is attributed to the peak of NH₂ protons of pyradizine ring, show little shift downfield in the spectra of the chelates δ 6.927-7.005 ppm for L₁ and δ 7.69-7.95 ppm for L₂ indicating some sort of deshielding as a result of complexation and confirming that this proton is replaced by metal ion . The hydrated nature of the free ligands and the isolated solid complexes is confirmed by the appearance of signal at δ 3.31-3.85 ppm region in the ¹HNMR spectra of all complexes. The downfield signal demonstrates clearly the

presence of lattic water molecules, since the uncomplexed H₂O proton occurs at δ 4.33 ppm⁵⁵. On the other hand, the proton signal of the coordinated H₂O molecules must exhibit at δ 2.88-3.29 ppm. The presence of water molecule is in agreement with the suggested formula based on the elemental analysis and is supported by thermal analysis data. The ¹H NMR spectra of the complexes show little downfield shifts in the signal of ring protons due to the deshielding effect of the metal ion ⁵⁶. The obtained data are listed in Table 4.

Compounds	δH ₂ O Lattic water	$\delta H_2 O$ Coordinated water	$\delta \mathrm{NH}_2$	δ(ring protons)
L ₁	-	-	6.862	7.64-7.670
L_1 -(La) ³⁺	3.387	3.083	6.930	7.641-7.679
L_1 -Ce ³⁺	3.394	3.253	6.927	7.65-7.680
L_1 -Sm ³⁺	3.383	3.146	6.930	7.650-7.678
L_1 -(Th) ⁴⁺	3.848	3.278	6.978	7.647-7.785
$L_1-(UO_2)^{2+}$	3.344	3.136	7.005	7.642-7.671
L ₂	-	-	7.67	7.90-8.330
L_2 -(La) ³⁺	3.887	3.297	7.948	8.295-8.354
L_2 - Ce^{3+}	3.316	2.884	7.950	8.295-8.303
L_2-Sm^{3+}	3.874	3.299	7.948	8.325-8.352
L_2 (Th) ⁴⁺	3.320	3.122	7.919	8.020-8.350
$L_2-(UO_2)^{2+}$	3.310	2.986	7.948	8.285-8.315

Table 4. Proton ¹H NMR spectral of ligands and complexes in DMSO

Molar conductance

The ionic nature of the complexes under investigation can be further confirmed by measurement of the molar conductance values of 1×10^{-3} mol dm⁻³ solutions of the isolated complexes in DMF at 30°C. The obtained molar conductance values are listed in table 1. It is evident from the results that the molar conductance values of mononuclear [1:1]L₁ complexes is in the 6.18-19.06 S. mol⁻¹ cm² and [1:1]L₂ complexes is in the range 6.72-16.15 S. mol⁻¹ cm², which are commensurate with values characteristic for neutral complexes⁵⁷. This reveals a non-electrolytic nature of the synthesized complexes. These results support the suggested formula of the solid chelates on the bases of elemental analysis. Thus, the ligand acts towards the metals studied as a neutral, bidentate one coordinating through the nitrogen of NH₂ group and C=O group of pyridazine ring.

Mass spectrum of the ligands

The mass spectrum of the ligand L₁ gives a molecular ion of M/e = 344 of abundance 61.86%. The mass spectrum pattern gives a molecular ion of M/e = 255 which related to the mass of the reminder part of the ligand radical after losing of amino and EtO₂C groups. This followed by losing NH₂ group forming a molecular ion of M/e = 239 of abundance 55.67%. This followed by losing C₆HN₂OS group forms a molecular ion C₇H₆⁺ positive radical M/e = 90. The remaining residual fragment of toluene (methyl benzene) positive radical C₇H₆⁺ Forming aresonance stabilized benzylic carbocation ,which rearranges to tropylium cation, and this strong peak at m/e = 90 is a hallmark of compounds containing a benzyl unit. The minor peak C₅H₄⁺ M/e = 64 of abundance 100% represents loss of neutral acetylene from the tropylium ion. On the other hand, the mass spectrum pattern appears fragment of C₇H₆⁺ may be loss CH₃ group and giving phenyl group positive radical M/e = 75 of abundance 88.66%, this will appear clearly (Scheme 2) as followed.

Scheme 2. Mass spectra framentation of L_1

The mass spectrum of the ligand L₂ gives a molecular ion of M/e = 360 of abundance 82%. The molecular ion of M/e = 271which related to the mass of the reminder part of the ligand radical after losing of amino and EtO₂C groups. This followed by losing C₆HN₂OS group forming a molecular ion of M/e = 122 of abundance 36.34%. The losing of mass of NO₂ is followed by forming phenyl radical M/e = 76 of abundance 18.54% and followed by losing C₂H₂ group gave C₄H₂⁺ a molecular ion of M/e = 50 of abundance 15.45%.

On the other hand, mass spectrum of the molecular ion of M/e = 122 may be rearrangement and losing NO radical during fragmentation aryloxy is indicated by appearing of peak of M/e = 92 of abundance 38.24%. The lossing of mass of C=O group is followed by forming aromatic ring as positive radical $C_5H_4^+$ a molecular ion of M/e = 64 of abundance 32.92% The following (Scheme 3) show the above discussion.

Thermal analysis and mass spectra of the complexes

The TG thermogram of the (1:1) $La^{+3}-L_1$ complex shows four thermal degradation stages changes at temperature ranges 27-107, 108-280, 281-697, -698-1097 °C. In the first stage, occurring at 27-107 °C the process is accompanied by a weigh loss of 10.88% corresponding to evalution of four molecules of water of crystallization. In the second step at temperature range 108-280 °C three molecules of water coordination amine and methyl groups gives mass loss of 11.52% of abundance 57.41%, forming a molecular ion M/e 558.4. The third steps occurs at temperature ranges 281-697 °C , they may be regarded as aresult of breaking two chloride ion $C_6H_3^+$ and EtO₂C groups by weight loss of 30.97% forming molecular ion M/e= 339.4 of aboundance 65%. The final step at temperature ranges 698-1097 °C represents mass loss 25.71% of N_2 gas, chloride ion and $C_6H_3NS^+$, so the compound convert into metal oxide (LaO) M/e 154.9 of aboundance $M^+=7.04\%$, where (a) is mass spectra fragmentation and (b) is thermal fragmentation (Scheme 4).

Scheme 4. Themal and mass spectra fragmentation of L1+La(III) chelate

The TG thermogram of the $(1:1)UQ_2^{+2}-L_1$ complex shows four thermal degradation stages changes at temperature ranges 36-124, 125-244, 301-645, 850-1099 °C. In the first stage lies at 36-124 °C and correspond to loss two molecules of water of crystallization 4.45%. In the second inflection at temperature range 125-244 °C gives mass loss of 31.41% corresponds to the breaking of four molecules of water coordination, (NO₃)₂ and EtO₂C molecules ion M/e = 541.03. The third step in TG curve the complex loss 23.36% form its mass due to the elimination of N₂ gas ,C₃HS⁺, C₇H₈N group with in temperature at 301-645 °C ,forming molecules ion M/e = 338.03(0.3%). The final step at temperature ranges 850-1099 °C represent , the loss of residual organic part ion 7.83% so that the compound converted metal oxide UO₂⁺² (Scheme 5).

Scheme 5. Thermal of and mass spectra fragmentation of $L1 + UO_2(II)$ chelate

The TG thermogram of the (1:1) Sm³⁺-L₂ complex defines four thermal changes. The first stage at temperature range 34-149 °C is accompanied by a weight loss of one molecules of water of crystallization 2.66%. In the second step at temperature range 148-340°C, this peak represents the start of ligand degradation. The 55.69% mass loss corresponds to loss five molecules of water of coordination, (NO₃)₂, EtO₂C and *p*-nitro benzene ,forming molecules ion M/e =315.4 of abundance 100%. The third inflection at temperature rang 348-646 °C gives a mass loss of 13.5 % corresponds to the breaking of N₂ gas and C₃H₅⁺ group forming molecules ion 218.4. The four stage at temperature range 648 – 999.8°C represents , the loss of residual organic part ion 7.03% so that the compound converted metal oxide SmO molecules ion M/e = 166.4 of abundance 1.68% (Scheme 6).

The pyrolysis of (1:1) $UO_2^{+2} - L_2$ complexes shows five inflections in the TG curve. The first stage lies at 36-100 °C and corresponds to a loss of one molecule of water of crystallization (1.54%). The second inflection at temperature rang 101-182 °C gives a mass loss of 10.789 % corresponds to the breaking of two molecules of water coordination and loss of NO₂ group forming molecules ion 708.03 of abundance 1.02%. The third inflection at temperature range 182-202 °C, gave mass loss of 33.04% which corresponds to the breaking of (NO₃)₂, EtO₂C and C₆H₄⁺ groups, forming molecules ion M/e= 435.03 of abundance 1.19%. The weight loss of 11.896% corresponds to the loss of N₂ gas and C₃HS⁺ group occurs at temperature range 520-718 °C in TG curve, forming a molecular ion M/e 338.03 of abundance 1.23%. In the final process at temperature range 818-953 °C, which due to loss of the remain part of C₃ H₂NO with a mass of 7.84% then the complex converted metal oxide UO₂⁺² as an end product (Scheme 7).

Scheme 7. Thermal and mass spectra fragmentation of $L2 + UO_2(II)$ chelate

Antimicrobial activity

Structure-antimicrobial (biological) activity relation-ship for some selected newly synthesized dihydrothieno[3,4,D]pyridazine compounds a,1a,2a,3a,4a,5a, equal to L₁, L₁-Ce(III), L₁-La(III), L₁-Sm(III), L₁-UO₂(II) and L₁-Th(IV) and b,1b,2b,3b,4b,5b, equal to L₂, L₂-Ce(III), L₂-La(III), L₂-Sm(III), L₂-UO₂(II) and L₂-Th(IV), respectevally were studied and determined against some bacterial *Escherichia Coli* (Gram-negative bacteria), *Staphylococcus Aureus* (Gram-positive bacteria), and fungi strains *Candida*, Ampicillim was used as the standard antibacterial agent and Amphotericin was used as the standard Antifungal agent . The antibacterial activity showed that all compounds were active against microorganisms. All compounds were less active in comparison to Ampicillim, which was taken as a standard drug. Further, investigation on the biological activity of these compounds will be considered in the progress. Inactive fungi strains (inhibition zone <9.3 mm).

The data obtained are expressed as size (mm) of inhibition zone. Diameter of the inhibition zones were high (22-18 mm), moderate (17-12 mm), slight (11-1 mm), no response (-). It is clear from the microbiocidal screening data that the metal complexes are more toxic in comparison to their parent ligand itself. Hence complexation increase the antimicrobial activity⁵⁸, such increased activity of the metal complexes can also be explained on the bass of chelation theory^{59,60}. Bacterial and fungus strains and the biological effect are shown in Table 5.

	Inhi	bition Zone diame	eter (mm/mg s	ample)
Samula	Escherichia	Staphylococcus	Candida	Aspergillus
Sample	$Coli(G^{-})$	Aureus(G ⁺)	Albicans	Flavus
			(Fungus)	(Fungus)
Control: DMSO	0	0	0	0
Ampicillin	22	18		
Antibacterial Agent				
Amphotericin B	-	-	19	16
Antifungal Agent				
а	10	10	12R	0
1a	11	10	9	0
2a	13	12	9	0
3a	12	11	0	0
4a	20	18	9	0
5a	11	16R	0	0
b	0	0	0	0
1b	11	11	0	0
2b	10	10	9	0
3b	9	0	9	0
4b	16R	16R	10	0
5b	11	11	10	0

Table 5. Biological	activity of some new s	ynthesized complexe
---------------------	------------------------	---------------------

The final conclusion from this work is that these novel compounds showed significant antibacterial activity according to the following factors:

- (1) Diameter of the inhibition zones were high in actinide complexes than lanthanide complexes
- (2) The presence of either electron donating and/or accepting group.

Conclusion

Coordination compound formed by the interaction of dihydrothieno[3,4-d]pyridazine with La(III), Ce(III), Sm(III), Th(IV) and UO₂(II) are prepared and characterized by elemental analysis, IR, ¹HNMR Mass spectra and thermal analysis . The analysis data indicate that the ligand acts as bidentate on chelation, thermogravimetric analysis confirm the presence of coordinates water. The IR spectra indicate that coordination takes place through the nitrogen of amino group and C=O group of pyridazine ring. Antimicrobial activity of selected compounds against some bacterial strains was tested and confirm the antimicrobial activities of the ligand increase on coordination with the metal ion.

Acknowledgement

The author thankful to the Department of Chemistry, Aswan Faculty of Science, Aswan University, Aswan, Egypt for support of the work.

References

- 1. Asif M, Curr Med Chem., 2012, **19(18)**, 2984–2991; DOI;10.2174/09298671-2800672139
- Siddiqui A, Mishra R, Husain A, Rashid M and Pal P, *Bioorg Med Chem Lett.*, 2011, 21(3), 1023-1026; DOI:10.1016/j.bmcl.2010.12.028
- 3. Rathish I, Kalim J, Shamim A, Sameena B, Alam M, Akhter M, Pillai K, Ovais S and Samim M, *Eur J Med Chem.*, 2012, **49**, 304-309; DOI:10.1016/j.ejmech.2012.01.026
- 4. Othman M M, Nasr H M and Hassan M I, *Can Chem T.*, 2014, 2, 504- 517; DOI:10.13179/canchemtrans.2014.02.04.0133
- Ruso J, Rajendiran N, Srinivas C, murthy KN and Soumya K, *J Kor Chem Soc.*, 2014, 58(4), 377-380; DOI:10.5012/jkcs.2014.58.4.377
- Attanasi O A, Favi G, Filippone P, Perrulli F R and Santeusanio S, Org Lett., 2009, 11(2), 309-312; DOI:10.1021/ol802432z
- Wang X J, Du G J, Zhao S Q, Yan M and Gu L Q, *Chem Biol Drug Des.*, 2009, 74(3), 276-281; DOI:10.1111/j.1747-0285.2009.00859.x
- 8. Tucker J, Allwine D, Grega K, Barbachyn M, Klock J, Adamski J, Brickner S, Hutchinson D, Ford C, Zurenko G, Conradi R, Burton P and Jensen R, *J Med Chem.*, 1998, **41(19)**, 3727-3735; DOI:10.1021/jm9802741
- 9. Orazio A, Gianfranco F, Paolino F and Francesca R, *Org Lett.*, 2009, **11(2)**, 309-312; DOI:10.1021/ol802432z
- 10. Asif M, Singh A and Siddiqui A, *Med Chem Res.*, 2012, **21**, 3336-3346; DOI:10.1007/s00044-011-9835-6
- 11. Adel M and Maisa E, *J Chin Chem Soc Taip.*, 2002, **49**, 1057-1060; DOI:10.1002jccs200200152
- Rosowsky A, Chaykovsky M, Chen K, Lin M and Modest E J, *J Med Chem.*, 1973, 16(3), 185-188; DOI:10.1021/jm00261a002
- 13. Shetty N S, Lamani R S and Khazi I M, *J Chem Sci.*, 2009, **121**, 301-307; DOI:10.1107/S1600536811021155
- 14. Onal Z, Zeng H and Sonmez M, *Turk J Chem.*, 2011, **35**, 905-914; DOI:10.3906/kim-1103-55
- 15. El-Ansary A, Kamal A and Al-Ghorafi M, *Med Chem* Res., 2013, **22**, 2589-2601; DOI:10.1007/s00044-012-0258.9
- 16. Saleh A B and Atef M A and Ahmed A F, J Am Sci., 2010, 6, 151-159; DOI:10.7537/j.issn.1545-1003
- Khaled A, Nadia A, Eman M, Hekmat A and Moustafa E, *Med Chem Res.*, 2010, 19(7), 629- 642; DOI:10.1007/s00044-009-9218-4
- 18. Bakhite E A, Abdel-Rahman A E, Mohamed O S and Thabet E A, *Bull Kor Chem Soc.*, 2002,23, 1709-1714; DOI:10.5012/bkcs.2002.23.12.1709
- 19. Voronina A, Litova N, Kuzmin I, Razumov M, Vashurin A, Shepelev M and Pukhovskaya S, *Eur Chem Bull.*, 2014, **3**, 857-859; DOI:10.1142/S10884246-14501028
- 20. Srivastava P, Upreti D K, Dhole T N, Srivastava A K and Nayak M T, Perspect Infect Dis., 2013, **2013**, 709348-709353; DOI:10.1155/2013/709348
- 21. Khalil K D and Al-Matar H M, *Molecules*, 2013, **18**, 5288-5305; DOI:10.3390/molecules18055288
- 22. Elassar A A, Alsughayer A, Sagheer F, J Chem Soc Res., 2013, 37, 191-255; DOI:10.3184/174751913X13640546938841

- 23. Raja N and Ramesh R, *Tetrahedron Lett.*, 2012, **53**, 4770-4774; DOI:10.1016/j.tet-let.2012.06.119
- 24. Tuccinardi T, Zizzari A T, Brullo C, Daniele S, Musumeci F, Schenone S, Trincavelli M, Martini C, Martinelli A, Giorgi G and Botta M, *Org Biomol Chem.*, 2011, **9**, 4448-4455; DOI:10.1039/C0OB01064B
- 25. Grünwald K, Saischek G, Volpe M, Belaj F and Mösch-Zanetti N C, *Eur J Inorg Chem*., 2010, **2010**, 2297-2305; DOI:10.1002/ejic.201000120
- Suárez V, Gutiérrez A, Quintela J M, Peinador C, Quintela J M, J Org Chem., 2009, 74, 6577-6583; DOI:10.1021/jo901034c
- Ferguson G N, Valant C, Horne J, Figler H, Flynn B L, Linden J, Chalmers D K, Sexton P M, Christopoulos A and Scammells P J, *J Med Chem.*, 2008, **51**, 6165-6172; DOI:10.1021/jm800557d
- 28. Nara S, Martinez J, Wermuth C, Parrot I, *Synlett.*, 2006, **19**, 3185-3204; DOI:10.1055/s-2006-951528; Art ID: A41806ST
- 29. Fang-Qian L Q, Acta Phys Chim Sin., 2005, **21**, 52-56; DOI:10.3866/PKU.WHXB-20050111
- 30. Krajsovszky A, Haider N, Matyus P, *Heterocycles*, 2001, **55**, 1105-1111; DOI:10.3906/kim-210-22
- 31. Haider N and Käferböck J, *Heterocycles*, 2000, **53**, 2527-2534; DOI:10.3998/ark.555-0190.0009.703
- 32. Carlucci L, Ciani G, Proserpio D M, and Sironi A, *Inorg Chem.*, 1998, **37**, 5941-5943; DOI:10.1107/S2052252514015966
- Ghedini M, Neve F, Lanfredi A M, Ugozzoli F, *Inorg Chim Acta.*, 1988, 147, 243-250; DOI:10.1039/b923729a
- 34. Ramadan A A, Seada M H, Rizkalla E N, *Talanta.*, 1983, **30**, 245-250; DOI:10.11648/j.mc.s.2015030101.13
- 35. Arvid H and Skancke P N, *Acta Chem Scand.*, 1972, **26**, 2601-2613; DOI:10.891/.Acta.Chem.Scand, 26-2601
- 36. Yang F, Li X, Wang H, Ni S and Shi D, *Acta Cryst.*, 2006, **62**, o3566-o3567; DOI:10.1107/S1600536806028467
- 37. Ballatore C, Crowe A, Piscitelli F, James M, *Bioorg Med Chem.*, 2012, **20**, 4451-4461; DOI:10.1016/j.bmc.2012.05.027
- 38. King P, Lomovskaya O, Griffith D, Burns J and Dudley M, Antimicrob Agents Ch., 2010, 54, 143-148; DOI:10.1128/AAC.00248-09
- 39. Kuzucu C, Rapino B, McDermott L, and Hadley S, *J Clin Microbiol.*, 2004, **42**, 1224-1227; DOI:10.1128/JCM.42.3.1224-1227.2004
- El-Mashad N, Foad M F, Saudy N, Salem D A, Braz J Microbiol., 2012, 43, 266-273; DOI:10.1590/S1517-83822012000100031
- 41. Varaldo P E and Facinelli B, *J Antimicrob Chemother.*, 2006, **50**, 4229-4230. DOI:10.1128/AAC.00943-06
- 42. Mohamed M A, Ibrahim O B, *J Mol Struct.*, 2014, **1056**, 13-24. DOI:10.1016/j.mol-struc.2013.10.019
- 43. El-Sherif A A, Shehata M R, Shoukry M M and Barakat M H, *Spectrochim Acta* A, 2012, **96**, 889- 897; DOI:10.1016/j.saa.2012.07.047
- 44. Ganguli K K, Carlisle G O, Hu H J, Theriot L J, Bernal I, *J Inorg Nucl Chem.*, 1971, **33**, 3579- 3581; DOI:10.1016/0022-1902(71)80683-8
- 45. Mondal S, Prasad S, Dutta S and Chakravorty A, *J Chem Soc Dalton Trans.*, 1996, **1**, 99-103; DOI:10.1039/DT9960000001
- 46. Wilkinson G, Gillard R D and McCleverty J A (eds), Comprehensive Coordination Chemistry, 1st edition, Pergamon, Oxford, 1987, **6**,541; DOI:10.5402/2011/16859

- 47. Gupta H K and Dikshit S K, *Transit Metal Chem.*, 1985, **10**, 469-472. DOI:10.1007/BF00620712.
- 48. Al-Mous S, A. Elassara A and El-Apaserya M, *Phosphorus Sulfur Silicon and the Related Elements*, 2006, **181**, 1755-1771; DOI:10.1080/10426500500536457
- Agarwal S K, Saxena A K, Anand N, Synthesis, 1981, 6, 465-466; DOI:10.1055/s-1981-29487
- 50. Stefan S L, J Therm. Anal., 1994, 42, 1299-1312; DOI: 10.1016/j.saa.(2005)06.031
- 51. Bhattacharjee M,Gogoi P, Barman P, Kalita R, Sarma B, Karmakadoi S, *Polyhedron.*, 2013, **60**, 47-53. DOI:10.1016/j.poly.2013.04.062
- 52. Thoonen S H, Deelman B, Koten G, *J Organomet Chem.*, 2004, **689**, 2145- 2157; DOI:10.1016/j.jorganchem(2004).03.027
- 53. Amin A S, Mohammed T Y, Talanta., 2001,30, 611-620; DOI:10.1172/JCI35337
- 54. Kumar S, Leavell S, Porter K, Assogba B and Burkhard M, *Retrovirology.*, 2010,7, 49; DOI:10.1186/1742-4690-7-49
- 55. Uzoukwu B, Spectrochim Acta A., 1995, **51**, 1081-1082; DOI:10.1016/0584-8539(94)01297-T
- 56. Abeed A A, J Heterocyclic Chem., 2015,5, 1175-1178; DOI:10.1002/jhet.2225
- 57. Ong D T, Ballerin G, Morgan L, Buddle L, Scalia S and Young P, *AAPS J*, 2014, **16**, 269-280; DOI:10.1208/s12248-014-9560-4
- 58. Ibrahi D M and Abdel-Latif S A, *IOSR-JAC.*, 2013, **5**, 40-50; DOI:10.9790/4861-0325660
- 59. Leonor L, Juan M, María S, Oscar F, Eduardo E, Liliana B, Evelina G, Patricia A, J Coord Chem., 2011, 64, 350-356; DOI:10.1016/j.jscs.2011.11.020
- 60. Abdou S, Fathey A and Ahmed N, *J Coord Chem.*, 2008, **61**, 2380- 2401; DOI:10.1080/00958970801914041