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Abstract: The development of semiconductor photocatalysis for a wide range of environmental and 
energy applications. One of the most significant and commercial advances has been the development of 
visible light active TiO2 photocatalytic materials. In the present study, a visible light active TiO2 
photocatalyst was prepared through Nitrogen doping by using Ammonia as Nitrogen source. Preparation 
was performed by a sol-gel method at various temperatures such as 400 ºC, 600 ºC and 800 ºC. The 
resulting photocatalyst was characterized by XRD, SEM, EDAX. The decrease in concentration of 
rhodamine B was monitored by UV-Visible spectroscopy. The characterizations found that the 
photocatalyst possessed a high surface area and a crystalline size is about-19 nm, 28 nm and 52 nm 
respectively. On the degradation of rhodamine B in water under visible light irradiation [λ= 554 nm]. The 
photocatalytic activity increased with decrease in concentration of catalyst and increase in light intensity. 
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Introduction 

Foreign substances either from natural or anthropogenic sources, contaminated with water 
supplies, may be harmful to life because of their toxicity, reduction of normal oxygen level 
to water, aesthetically unsuitable and spread epidemic diseases. About 1-20% of the total 
world production of dyes is lost during the dyeing process and is released in the textile 
effluents1. The release of those coloured wastewaters in the environment is a considerable 
source of non-aesthetic pollution and eutrophication and can originate dangerous byproducts 
through oxidation, hydrolysis or other chemical reactions taking place in the waste water 
phase. It must be noted that dyes can present toxic effects and reduce light penetration in 
contaminated waters2. 

 Traditional physical methods such as ultrafiltration, reverse osmosis, coagulation by 
chemical agents, ion-exchange methods, adsorption of activated carbon or charcoal have 
been used for the removal of dye pollutants. These methods only succeed in transferring 
organic compounds from water to another phase, thus creating secondary pollution. 
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 The application of titanium dioxide as heterogeneous photocatalyst is altering considerable 
attention for water and air purification and remediation3-7. Because of its large band gap of 3.2 eV 
it can be activated only under UV light irradiation of wavelength <387 nm. However, UV light 
constitutes only a small fraction about 3-5% of the solar spectrum, it will have a positive effect 
for improving the photocatalytic efficiency of TiO2 by shifting its optical response to the visible 
range. So scientists are exploring methods to modify titanium dioxide to absorb visible light. 
Most of these investigations had been made to convert the TiO2 absorption from the ultraviolet to 
the visible region to dope TiO2 with transition metals such8-13 as Cr, Fe, Mn, V etc. However, the 
photocatalytic activity of transition metals doping is poor because of their thermal instability8. 
Recently, doping TiO2 with nonmetal atoms has received much attention. For example, doping of 
nitrogen14-19, carbon20-25, sulphur26-28 and iodine29 in TiO2 can lower its bandgap and shift its 
optical response to the visible region and also completely mineralize the target pollutants30. 

 In a semiconductor with a large bandgap, electrons in the valence band cannot jump up 
to the conduction band. However if energy is applied externally, electrons in the valence 
band can rise to the conduction band. Consequently as many electron holes as the number of 
excited electrons are created in the valence band. This is equivalent to the movement of 
electrons from the bonding orbital to the antibonding orbital. In other words, the 
photoexcited state of a semiconductor is generally unstable and can easily break down. 
Titanium oxide on the otherhand, remains stable even when it is photoexcited. This is one of 
the reason that TiO2 makes an excellent photocatalyst. 

 Rhodamine B is used as model organic dye, as it is most important Xanthene dye and 
dye pollutants from the textile industry are an important factor in environmental pollution 
and its degradation mechanism had been studied quite well30-32. The photodegradation of 
rhodamine B in aqueous solution was investigated by UV-Vis spectroscopy. 

Experimental 

Various methods are available for the preparation of TiO2-based photocatalysts, such as electro-
chemical33-38, thin films and spin coating39-41 precipitation42-46, hydrothermal and solvothermal47-52, 
solvochemical and chemical vapour decomposition53-55, Although, the benefits derived from 
preparing N-TiO2 (NT) by sol-gel method which include synthesis of nanosized crystallized 
powder of high purity at relatively low temperature, possibility of stoichiometry controlling 
process, preparation of composite materials, and production of homogeneous materials have 
driven many researchers to the use of the method in preparing TiO2-based photocatalysts. 

 Nitrogen doped TiO2 photo catalyst was prepared by sol-gel method using TTIP (titanium 
tetra isopropoxide) as the precursor of titanium and ammonia water as the source of nitrogen. 
12.00 g of TTIP liquid was mixed with 5 cm3 of absolute ethanol unit, the homogeneous solution 
was given. Ammonia water is added drop by drop into TTIP under constant stirring, white 
precipitate was given immediately. Solution with white precipitate was stirred 30 min. and stand 
18 h for aging. After aging white solid was filtered and calcined at 400 ºC, 600º C and 800 ºC.  

Phocatalytic study 

0.1 g of Photocatalyst was suspended in 100 mL aqueous RB-base dye solution in a 250 mL 
beaker. The suspension was stirred for 30 minutes in dark and irradiated under visible light. 
Samples were taken each 30 minutes, centrifuged and analysed for the degradation of 
Rhodamine B dye using UV-Visible spectrophotometer (Figure 1a & 1b). Rhodamine B dye 
has the maximum absorbance at 554 nm. 

 Absorbance of rhodamine B against time is recorded with same amount of catalyst with 
three different calcination temperatures is shown in the Figure 2(a-c). Absorbance is maximum  
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using 0.2 g nitrogen doped TiO2 at 600˚C and above a mixture of anatase and rutile phase of the 
sample were formed and hence absorbance somewhat decreases. The photocatalytic percent 
degradation of rhodamine B against time shown in Figure 3. Results show that all the modified 
catalysts give a linear relationship with time i.e., up to 120 minutes, after 30 to 35 minutes 0.2g 
NT 600 has better photocatalytic degradation than that of 0.2g NT 400 and 0.2NT 800. This 
indicates that the photocatalytic activity of the prepared photocatalyst reached maximum at 
600˚C. Further increase in the calcination temperature from 600 to 800◦C resulted in lower 
photocatalytic activity of the prepared photocatalyst. The reason given for this is that the increase 
in calcination temperature beyond 600 ◦C can promote the transformation of anatase to a mixture 
of anatase and rutile phase, which has little photocatalytic activity. 

 
 

 
 

Figure 1. (a) UV of RB Dye (b)  UV of RB dye degraded in the presence of NTiO2 
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Figure 2. (a) 0.2 g NT 600  (b) 0.2 g NT 400 (c) 0.2 g NT 800 

Results and Discussion 

SEM analysis 

The following Figure 4 shows surface morphology of microparticles with high-resolution 
images of the sample. The as-prepared N-TiO2 has the small particle size and a good 
dispersion. A good dispersion of small particles could provide more activated sites for the 
reactants than the aggregated particles. TiO2 doped with nitrogen gave more porous structure 
this may be attributed to prevention of TiO2 agglomeration. 
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Figure 3. % Degradation of NT 400, NT 600, NT 800 
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Fiigure 4. SEM of (a) NT 400 at 5 µm (b) NT 600 at 5 µm (c) NT 800 at 5 µm 

XRD analysis 

XRD was used to find the crystallographic structure of the inorganic component of the 
photocatalyst. Figure 5 shows the x-ray  diffraction  patterns of N-doped TiO2 prepared with  
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different calcinations temperature. All the as-prepared N-TiO2 materials have single phase, 
crystalline, anatase TiO2 (JCPDS no. 89-4921) except NT 800 sample, which is poorly 
crystalline anatase together with a small amount of rutile N-TiO2. No new diffraction peaks 
are observed in the N containing phase. 
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Figure 5. XRD patterns of N-doped TiO2 with calcination temperatues 

 
 

Figure 6. EDAX of NTiO2 
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nitrogen content and increase the calcination temperature leads to an increase of the average 
crystal size of N-doped TiO2. It can therefore be concluded that the level of nitrogen doping 
has a significant effect on the particle size of TiO2 grown during the doping process. 

Table 1. Crystalline size and phase composition of N-doped TiO2 (NT) with different 
calcination temperature 

NT at difference calcinations 
temperature, 0C 

Phase 
Composition 

Average Crystalline    
Size/nm 

400 Anatase 19 
600 Anatase 28 
800 Anatase, Rutile 52 

EDAX analysis 

EDAX patterns of N-TiO2 indicated Titanium and Oxygen as the major elements in the 
photocatalyst. The Figure 6 confirms the presence of dopant nitrogen in TiO2. 

Conclusion 

This study examined the preparation, characterization and photocatalytic study of Nitrogen 
doped titania photocatalyst. TiO2 nanoparticles were prepared by sol-gel method. From the 
SEM-EDX, UV-Vis results, it was confirmed that the incorporation of N in TiO2 decreases 
the grain size and hence increases the photocatalytic degradation of Rhodamine B dye under 
visible light irradiation. Overall, Nitrogen doped TiO2 photocatalysts revealed it’s potential 
for rapid degradation of RB dye in wastewater using visible light. N doped TiO2 possesses 
the highest visible light absorption and the best photocatalytic activity.  
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