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Abstract: The soft mode dynamics and related properties of order-disorder type crystals have been 
studied. The phonon width and shift have been calculated, which lead to the renormalization of the 
relaxation soft-mode. The dielectric properties are directly related to the relaxational soft mode 
behavior of stochastic motion of H2PO4  groups in order-disorder (KDP-system) crystals. The 
analysis of the temperature dependence of microwave loss tangent and dielectric constant explain 
the experimental results. 
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Introduction  

The study of order-disorder, KDP-type ferroelectrics has great significance because the 
varying properties of these materials are directly related to the industrial applications. They 
represent the most typical hydrogen-bonded ferroelectric with the order-disorder phase 
transition. This model crystals was studied more in detail than other ferroelectrics and is the 
most convenient object for the construction of macro- and microscopic theories of such 
transitions1,2. The symmetry of the room temperature phase of KH2PO4 is tetragonal )24( dI . 
Below the transition temperature, Tc=123 K, it forms an orthorhombic (Fdd2) structure in 
the ferroelectric phase. In the ferroelectric phase the positions of all hydrogens are fixed to 
PO4 radicals and a spontaneous polarization appears along the c-axis, and is not attributed 
directly to hydrogen, but to the displacement of K+ ions and deformation of the tetrahedral 
of PO4 radicals which are induced by the ordered arrangement of hydrogen. In the 
paraelectric phase the hydrogen atoms moves between two equivalent equilibrium positions 
in the O-H- -O hydrogen bonds, linking the PO4 tetrahedra and the configuration of 
hydrogen is random and the spontaneous polarization disappears.  

 Below transition temperature (Tc) this motion freezes out and the structure orders. This 
ordering is gradual and accompanied by displacement of the heavy atoms3. The real nature 
of the ferroelectric phase transition and the isotope effect on Tc for DH →  exchange in KH2PO4 
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or KDP-type ferroelectrics has not been fully explained3-5. The proton tunneling mode6, the 
earliest model used to explain the isotope effect, predicted the displacive type of phase transition. 
More recent crystal lattice dynamics measurements, on the other hand, have suggested the order-
disorder mechanism of phase transition, an extensively discussed elsewhere4,5. Raman 
spectroscopic studies confirm that the ferroelectric phase transition in KH2PO4, KD2PO4 and their 
mixed crystals is due to the “order-disorder dynamics” of PO4 dipoles7. Kaminow and Damen8 
first observed the soft mode associated with the ferroelectric phase transition of the KDP-type 
crystal at 122.3 K by measuring the low frequency Raman scattering in x (yx)y configuration. 

 Above Tc the excitation spectrum shows relaxation character and is centered around ω = 0. 
Only below Tc, a mode of finite frequency ω = 0 is found (as for spin waves in ferromagnets). In 
the displacive systems a mode of finite frequency exits even above Tc, and tend to freeze out on 
approaching Tc from above9. This soft mode was found extremely fruitful both for experimental 
and theoretical researches in structural phase transitions of displacive ferroelectrics10. The soft 
mode concept has been extended to order-disorder relaxational system3, wherein a mean field 

);(2 cTTrelax −∝=ωτπ whereas .21)( cTTsoft −∝ω
 
However, if soft mode is over damped.  Its 

temperature dependence cannot be distinguished from a relaxational response11.  

 Peercy12 has measured the pressure and temperature dependence of the soft-mode 
Raman spectra of KDP in both paraelectric and ferroelectric phases. At low pressure where 
the soft-mode is overdamped, the relaxation rate was found more reliable parameter than the 
individual parameters, i.e., the acoustic mode frequency and width.  

 At first, Pak13 employed Green’s function methods in the order-disorder type ferroelectrics, 
who however, did not consider the anharmonic interactions. The phonon anharmonic 
interactions have been found very important in explaining dielectric, thermal and scattering 
properties of solids by many authors9,14,15 in the past. Pak’s theory was further developed by 
Ramakrishanan and Tanaka16, who calculated the excitation spectrum of the system, but did not 
consider the anharmonic interactions. Their attempt, however, established the superiority of 
Green’s function method over the other methods. Ganguli17 

et al., modified Ramakrishanan and 
Tanaka theory by considering anharmonic interaction. Their treatment explains many features 
of order-disorder ferroelectrics. However, due to insufficient treatment of anharmonic 
interactions, they could not explain quantitatively good results and could not describe some very 
interesting properties, like dielectric properties, acoustic attenuation, relaxation rate etc. 

 In earlier study18 we have designed the Blinc and Zeks3 four-particle cluster model 
Hamiltonian in terms of phonon anharmonicity upto fourth order15. Applying Green’s 
function techniques and Dyson’s equation the higher order correlations have been evaluated 
using the renormalized Hamiltonian. The collective proton wave width and shift, collective 
phonon half width and mode frequency shift have been evaluated for KDP-type 
ferroelectrics in this study. 

 In the present study, we use the same Hamiltonian as our earlier study. The expressions 
for phonon width and shift have been evaluated for order-disorder type crystals. As the soft 
mode influences the acoustic modes via phonon-phonon interaction, the optical soft phonon 
width and acoustic phonon width are directly related to the acoustic attenuation. By setting the 
different parameters occurring in the dynamical equation accordingly, the phonon width and  
shift and hence dielectric constant and acoustic attenuation have been calculated for order-
disorder crystals. The theoretical results thus obtained for acoustics attenuation and dielectric 
constant are in good agreement with the experimental results, reported for order-disorder crystals. 
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Proton width and Shift 

Using double-time thermal Green’s function technique and Dyson’s equation, the general 
expression for optical and acoustical modes are obtained as our earlier work18. The soft mode 
frequency is given by 
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The expectation value of the proton collective mode component at site q have been 
obtained3 and given by equation 5 in our earlier study18. This represents a system of 3N 
equations for the average values of the collective mode components. The solution of this 
system will, however, be stable only if they minimum the free energy, i.e., if 
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Phonon width and Shift 

The consideration of four-cluster Hamiltonian along with the third and fourth order 
anharmonicities for the KDP ferroelectrics leads to the renormalization and stabilization of the 
relaxational soft mode and the renormalization of the pseudo-spin exchange interaction constant. 
Thus considering all interactions, expressions for the shift in response frequency and width have 
been calculated. This lead to the expression for soft mode frequency and dielectric properties. As 
in our earlier work18, the collective phonon mode frequency shift and width are obtained as: 
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 and collective phonon half width is obtained as  
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Comparison with Experiments and Discussion 

Following Kubo20 and Zubarev21.  The dielectric susceptibility is obtained as 
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 Where N is the number of unit cell in the sample and µ  is the effective dipole moment 

per unit cell. ),(22~2~~ ωωωω q
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 ),( ωqs∆ is the shift in phonon frequency and ),( ωqPΓ  is the phonon width. The   

dielectric constant can be calculated by using the relation 

χπε 41 += ,                                                                     (7) 

Using equation (7), the expression for dielectric constant from equation 6 can be obtained 

as 
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and the tangent loss 
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The soft mode frequency is very large as compared to the microwave frequency 

)10 3~~/(, −=ωωω and no relaxation effects are observed. Due to this appreciable difference 

between the microwave frequency and the normal optical phonon frequency, the real part of 
dielectric constant can be written as  
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 Tokunaga and Matsubara22 Matsubara and Yoshimitsu23 and Blinc and Svetina24 
developed a four proton clusters model which takes into account the correlations governing 
motions of four protons surrounding by a PO4 group. Vaks et al.,25 used the model of Blinc 
and Svetina24 but could not explain most of the features of KDP-system except the 
difference between the Curie and Curie-Weiss temperatures. Vaks and Zinenko26 performed 
extensive calculations for the static thermodynamic behavior in the four-particle cluster 
approximation and found satisfactory agreement with the experimental data. Similar four-
particle cluster calculations were made by Yoshimitsu and Matsubara27 and Havlin and 
Sompolinsky28. Their results, however, are in good agreement with experiment results, but 
they could not explain the observed relaxational behavior of dielectric properties and 
ultrasonic attenuation, explicitly, in KDP type ferroelectrics. 

 In the present study we have used a cluster of four protons, Hamiltonian is given in our 
earlier work18. The cluster approximation along with anharmonic interactions among heavy 
ions, take  an  account  of  strong  short  range  correlation among protons and heavy ions in  

, 
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KDP-system and gives satisfactory result for equilibrium properties of KDP. The 
correlations function have not been decoupled and are evaluated using renormalized 
Hamiltonian. This leads to the width and shift in the phonon frequency, which are directly 
related to the dielectric properties. 

 

 Equations 12 and 13 describe the behavior of KH2PO4 quit well. In the paraelectric phase, 
the dielectric constant of order-disorder type ferroelectric follows the Curie-Weiss law with 
C=103 K, when temperature is measured in K. The dielectric constant exhibits no relaxation at 
higher microwave frequency (35GHz). The Curie-Weiss behavior of tangent loss in KDP, 
shows that this contribution is due to the temperature independent term α in Equation 13. This 
suggests that imperfections cause damping. At higher temperatures the loss deviates strongly 
from the Curie-Weiss type behavior and increase linearly with temperature. This bevaviour 
assumes that at higher temperatures lattice anharmonicity is responsible for the observed loss. 

 The temperature dependence of microwave loss tangent in KDP is empirically 
represented by Equation 13. This dependence can be explained in terms of slowing down of 
a relaxational mode. The frequency dependence of microwave loss tangent for these samples 
is linear and similar is the temperature dependence at higher temperatures. This increase in 
loss is not due to the bulk electronic semi conduction because this would lead to expect a 
reciprocal dependence on frequency of tangent loss. The temperature dependence of the loss 
does not appear to be exponential. So third-and fourth-order anharmonocity may be 
responsible for the observed behavior of the microwave tangent loss. 
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