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Abstract: Quantitative structure-property relationship (QSPR) analysis to intrinsic viscosity [η] of 

poly(methyl methacrylate) solution have been conducted. The study was done by using molecular 

modeling. The calculation was performed by the PM7 method using MOPAC programme. The 

relationship analysis between intrinsic viscosity [η] and physicochemical properties of eight solvents 

(toluene, ethyl acetate, benzene, chloroform, butanone, dichloroethane, acetone and nitro ethane) 

under study was done by MLR analysis to generate the equation that relates the structural features to 

the intrinsic viscosity [η] properties. The results show excellent models with four parameters linear 

equations. The best model using theoretical parameters is identified, that including electronic 

energy, ω, dielectric energy and energy gap parameters, with excellent statistical fit as evident from 

its R2 = 0.993,  F= 107.222 and S=3.447. 
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Introduction 

The design of new materials with optimal thermophysical, mechanical and optical properties is 

a challenge for computational chemistry. Novel materials are typically developed using a trial 

and error approach, which is costly and time consuming
1
. An alternative strategy is to model 

the material properties as functions of the molecular structure using the so called quantitative 

structure–property relationships (QSPR)
2,3

. Application of QSPR methodologies in material 

design has the potential to decrease considerably the time and effort required to improve 

material properties in terms of their efficacy or to discover new materials with desired 

properties
4
. The QSPR approach is based on the assumption that the variation of the behavior 

of the compounds, as expressed by any measured physicochemical properties, can be 

correlated with changes in molecular features of the compounds termed descriptors
5,6

. The 

advantage of this approach lies in the fact that it requires only the knowledge of the chemical 

structure and is not dependent on any experimental properties. The QSPR  approach has 

been  successfully used to predict many polymeric properties, such as refractive index
3,7–10

, 
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glass transition temperature
8,11–17

, intrinsic  viscosity
18,19

, solubility parameters
20 

and 

conformational property
21

. In this work we demonstrate the usefulness and focus of some of 

the parameters in deriving predictive QSPR models. The relation between the intrinsic 

viscosity[η] of poly(methyl methacrylate) and quantum chemical calculated parameters, 

LUMO, HOMO, energy gaps (∆E), electronic energy, dielectric energy, ω and µ investigated 

theoretically. 

Modeling and Geometry optimization 

Full geometric optimization calculations for eight solvents (toluene, ethyl acetate, 

benzene, chloroform, butanone, dichloroethane, acetone and nitroethane) were 

performed using PC gamess
22

. Geometry optimizations were performed using 6-31G(d) 

basis set and PBE method
23

. Physical properties calculated involve electronic energy, 

dielectric energy, energy gaps (∆E), LUMO energy and HOMO energy, ω and µ. The 

experimental values of intrinsic viscosity[η] of poly(methylmethacrylate) of eight 

solvents taken from reference
18

. The structure of poly(methylmethacrylate) under study 

shown in Scheme 1. 

 

Scheme 1. Structure of poly(methylmethacrylate)
 

Results and Discussion 

Multiple linear regressions (MLR) are one of the mathematical methods which have an 

extent application. The predictive model of QSPR study has been built up with the help of 

the following descriptors (Table 1). These descriptors for poly(methylmethacrylate) under 

study were calculated. The best model derived from the (MLR) analysis was used to 

intrinsic viscosity polymer in the eight organic solvents which is using in this study 

(toluene, ethyl acetate, benzene, chloroform, butanone, dichloromethane, acetone and 

nitro ethane). Several equations were generated by using all the variables and the best 

statistically model that we have obtained is four descriptor equations. To establish the 

statistical correlation, the physicochemical parameters were taken as independent 

variables and intrinsic viscosity as dependent variable. The best model was selected on the 

basis of statistical parameters viz observed with high correlation coefficient (R), sequential 

Fischer test (F) and low standard error of estimate (SE), were employed to judge the 

validity of regression equation and evaluate the obtained QSPR models
24-25

. The model of 

QSPR study has been build up with help of the theoretical descriptors and experimental 

descriptors (Table 1). The best model derived from the (MLR) analysis was used to 

intrinsic viscosity polymer in the 8 organic solvents which is using in this study (toluene, 

ethyl acetate, benzene, chloroform, butanone, dichloroethane, acetone and nitroethane). 

Several equations were generated by using all the variables and the best statistical model 

that we have obtained is four descriptor equations
26-30

. 
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Table 1. Calculated physicochemical descriptors of the solvents 

No.  

molecular 
Solvents *Exp[η] 

Elec. 

Energy 

Dielec. 

Energy 
LUMO HOMO 

E.Gap 

(∆E) 
µ ω 

1 Toluene 101 -33906.2 -0.416 0.866 -10.435 11.301 4.784 2.025 

2 Ethyl acetate 60 -22184.7 -0.776 0.77 -10.614 11.384 4.922 2.128 

3 Benzene 70 -34535 -0.397 0.865 -10.436 11.301 4.785 2.025 

4 Chloroform 124 -24451.3 -0.699 0.804 -10.56 11.364 4.878 2.093 

5 Butanone 49 -16308.4 -1.008 0.723 -10.682 11.405 4.979 2.173 

6 Dichloroethane 60 -18517.1 -0.921 0.755 -10.642 11.397 4.943 2.144 

7 Acetone 48 -15979.3 -1.024 0.731 -10.675 11.406 4.972 2.167 

8 Nitroethane 58 -14631.8 -1.054 0.726 -10.691 11.417 4.982 2.174 

*Ref=18, Exp[η]=Experimental viscosity of polymer, ∆E= energy gaps in eV, HOMO=The energy of 

highest occupied molecular orbital in eV, LUMO= The energy of lowest unoccupied molecular orbital 

in eV, Elec. energy=electronic energy in eV, Dielec. energy =dielectric energy in eV, µ=Chemical 

potential, ω=Electrophilicity index. 

 From Table 1, the model of QSPR study has been built up with help of the theoretical 

descriptors electronic energy, dielectric energy, energy gaps (∆E), LUMO energy and 

HOMO energy, ω and µ. The several QSPR model depends on the four theoretical 

descriptors Table 2. 

Table 2. Statistical parameters of the linear regressions models obtained by using four descriptors 

S  F  R
2

  Descriptors 

3.447  107.222  0.993  Elec E, ω, Dielec.E & E.Gap  

3.527  102.395  0.992  Elec.E, LUMO, Dielec.E & E.Gap  

3.527  102.395  0.992  Elec.E, LUMO, Dielec.E & HOMO  

3.600  98.259  0.992  Elec.E, µ, Dielec.E & E.Gap  

 The best model was chosen, from Table 2 as the excellent model which it has less 

standard error (SE) and high R
2
 and F values. The model when depend on four theoretical 

descriptors Elec.E, ω, Dielec.E and E.Gap, gave good model with correlation coefficient R
2
 

values for this model of 0.993, as equation 1. 

 [η]= 0.1308Elec.E-456.918ω+2651.095Dielec.E-6922.180E.Gap+84796.039                   (1) 

 In Eq. 1 the positive signs of Elec. E and Dielec. E descriptors refers to a positive 

correlation with the intrinsic viscosity while negative signs of ω and E.Gap descriptors 

suggest that the intrinsic viscosity decreases with increasing value of this descriptor. The 

relationship between the experimental and predicted data in the model represented in the 

Figure 1.  

 

 

Figure 1. Plot of intrinsic viscosity prediction vs. experimental intrinsic viscosity using Eq.1 
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 In Eq 2, the negative sign of E.Gap descriptor refers to inverse correlation between 

E.Gap with the intrinsic viscosity and on the other hand in this model E.Gap have 

negative sign which suggests that the intrinsic viscosity increases with decreasing value 

of this parameter. The relationship between the experimental and predicted data shown in 

Figure 2. 

[η] = 0.1316Elec.E+371.825LUMO+2669.675Dielec.E-7088.728E.Gap+85465.143         (2) 

 
 

Figure 2. Plot of intrinsic viscosity prediction vs. experimental intrinsic viscosity using Eq.2 

 In Eq. 3 the positive signs of Elec.E, Dielec.E and HOMO descriptors refers to a 

positive correlation with the intrinsic viscosity while negative signs of LUMO descriptors 

suggest that the intrinsic viscosity decreases with increasing value of this descriptor. The 

relationship between the experimental and predicted data is represented in the Figure 3. 

[η] = 0.1316 Elec.E-6716.903 LUMO+2669.675 Dielec.E+7088.728 HOMO+85465.143       (3) 

 
 

Figure 3. Plot of intrinsic viscosity prediction vs. experimental intrinsic viscosity using Eq.3 

 While Eq. 4 the positive signs of Elec.E, Dielec.E descriptors refers to a positive 

correlation with theintrinsic viscosity while negative signs of µ and E.Gap descriptors 

suggest that the intrinsic viscosity decreases with increasing value of this descriptor. The 

relationship between the experimental and predicted data is represented in the Figure 4.  

[η]=0.132 Elec.E-358.156µ+2681.347 Dielec.E- 6934.762E.Gap+85780.327              (4) 
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Figure 4. Plot of intrinsic viscosity prediction vs. experimental intrinsic viscosity using Eq.4 

Conclusion 

The present study have been shown to provide very good QSPR models for the estimation of 

intrinsic viscosity of poly(methyl methacrylate) solution by using values theoretical 

descriptors calculated. The study indicated that intrinsic viscosity[η] of poly(methyl 

methacrylate) solution parameters of organic solvents can be modeled. The best model when 

depends on theoretical descriptors [Elec.E, ω, Dielec.E and E.Gap] was Eq.1, From all the 

results, the QSPR models, Eq. 1. And this showed insignificant role in predict the QSPR 

model of the intrinsic viscosity[η] of poly(methylmethacrylate)  solution. This result 

encourages the application of QSPR techniques to awider selection of polymer properties. 
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