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Abstract: To search of newer and potent antileishmanial drugs, a series of 36 compounds of 5-(5-

nitroheteroaryl-2-yl)-1,3,4-thiadiazole derivatives were subjected to a quantitative structure-activity 

relationship (QSAR) analysis for studying, interpreting and predicting activities and designing new 

compounds using several statistical tools, The multiple linear regression (MLR), non-linear 

regression (RNLM) and artificial neural network (ANN) models were developed using 30 molecules 

having pIC50 ranging from 3.155 to 5.046. The best generated MLR, RNLM and ANN models show 

conventional correlation coefficients R of 0.750, 0.782 and 0.967 as well as their leave-one-out 

cross-validation correlation coefficients RCV of 0.722, 0.744 and 0.720, respectively. The predictive 

ability of those models was evaluated by the external validation using a test set of 6 molecules with 

predicted correlation coefficients Rtest of 0.840, 0.850 and 0.802, respectively. The applicability 

domains of MLR and MNLR transparent models were investigated using William’s plot to detect 

outliers and outsides compounds. We expect that this study would be of great help in lead 

optimization for early drug discovery of new similar compounds. 

Keywords: Leishmaniasis, 5-(5-nitroheteroaryl-2-yl)-1,3,4-thiadiazole, QSAR model, MLR, 

MNLR, ANN 

Introduction 

Leishmaniasis is a parasitic disease caused by protozoan parasites of the genus Leishmania, 

is generally recognized as an important public health problem, which touching millions of 

people living mainly in large areas of tropical and subtropical regions. Currently, there are 

only a limited number of drugs that are available for the treatment and control of this 

Leishmaniasis disease, all of which are associated with limiting factors such as high toxicity,  
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variable efficacy, long dosing schedules and/or parenteral administration
1,2

. To date, no 

vaccine against any clinical form of Leishmaniasis has been commercialized and its 

treatment relies solely on chemotherapy that has been based on the use of pentavalent 

antimonial drugs. Other drugs, such as pentamidine, miltefosine and amphotericin B, have 

been used as alternative medications towards resistant parasites. With the emergence of 

some resistant strains, all those drug therapies cause serious side effects. Furthermore, 

general treatment is unaffordable for many afflicted countries. Therefore, there is always a 

need for designing newly potent, safer and cheaper drugs
3-5

. 

 A promising strategy for discovering new therapeutic leads is to study classes of 

compounds potentially bioactive or old active compounds for alternative uses. Nitrogen 

heterocycles such as quinolines, pyrimidines, acridines, phenothiazines, indoles quinones, in 

general  and  particularly thiadiazole derivatives as well as their reduced derivatives have 

been tested in the last years in antileishmanial tests. 

 Thiadiazole derivatives since their discovery in twentieth century have demonstrated a 

broad spectrum of pharmacological properties
6
. They used initially as antibacterial agents

7
, and 

rapidly revealed an interesting antiproliferative activity against both protozoa and tumor cells 
8,9

. 

Consequently, these derivatives have been extensively used in antiparasitic chemotherapy and a 

large variety of new thiadiazole derivatives were synthesized and evaluated for their in vitro 

antileishmanial activity
10,11

. Today, traditional methods for drug discovery and development 

have been gradually replaced by modern approaches, wherein computational techniques have 

become inevitable in drug development pipeline by reducing the amount of synthetic works and 

biological evaluations needed to achieve the required results. 

 In the present study, QSAR studies based on principal components analysis (PCA), 

multiple linear regression (MLR), non-linear regression (RNLM) and artificial neural 

network (ANN) calculations were performed on a series of 36 of (5-nitroheteroaryl-1,3,4-

thiadiazole-2-yl) piperazinyl derivatives
12

, in order to identify the key structural features 

required to design new potent lead candidates of this class. The results extracted from this 

study might be helpful to design highly potent antileishmanial drugs. 

Experimental 

The experimental antileishmanial activity IC50 (µM) of 36 thiadiazole derivatives were collected 

in previously study
12

. The dataset was split randomly into a training set (thirty molecules) to 

build the quantitative model and the remaining molecules were used to test the performance of 

the proposed model (Test set). The molecular structures of the studied molecules with their 

antileishmanial activity converted into pIC50 (-logIC50) are presented in Table 1.   

Molecular descriptors generation 

The calculation of electronic descriptors was carried out by using the Gaussian03W package
13

. 

The geometries of 36 thiadiazole derivatives were optimized with DFT method with the 

B3LYP functional and 6-31G (d) base set. Then, several related structural features were 

opted from the obtained results of calculations as follows: highest occupied molecular 

orbital energy (EHOMO), lowest unoccupied molecular orbital energy (ELUMO), dipole moment 

(µ), energy gap (∆E) and total energy (ET). 

 ChemSketch program
14

 was employed to calculate the others molecular descriptors such 

as: the molar volume MV (cm
3
), the molecular weight MW (g/mol), the molar refractivity 

MR (cm
3
), the parachor Pc (cm

3
), the density D (g/cm

3
), the refractive index n and the 

octanol/water partition coefficient log P. 
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Table 1. Chemical structures of thiadiazole derivatives used in this study 
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Methods of data analysis 

Principal component analysis (PCA) 

The principal component analysis is a data analysis method used to transform a set of 

variables correlated to a new set of variables, called principal components. They are fewer 

but independent. Using these new variables, the dimensionality of the system is reduced 

with a minimum loss of information
15

. The obtained matrix of coordinates allows us to 

analyze the dispersion of individuals in the new defined space
16-18

. After that, the principal 

component analysis (PCA) was used to determine the non-linearity and non-

multicollinearity among variables and to select descriptors that correlate with the activity. 

Multiple linear and non-linear regressions 

Multiple linear regression is used to study the relation between one dependent and several 

independent variables. The aim of this method is to minimize the difference between the 

actual and predicted values of any experimental effect and was used to select the descriptors 

to be used as input in the multiple non-linear regression and as well as in the artificial neural 

network. Multiple linear and non-linear regressions are generated using the software 

XLSTAT version 2013 that were used to predict effects on the antileishmanial activity.  
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 Equations of models were mainly justified by the correlation coefficient ®, the mean 

squared error (MSE), the Fisher’s F statistic and the significance level (p-value)
19

. 

Artificial neural network (ANN) 

This ANN method is performed in order to rise the chance of characterizing the studied 

compounds and to generate a predictive QSAR model between the molecular descriptors 

selected in the MLR equation and the observed activity values. The ANN analysis was 

applied by using the Matlab (2014) software, neural mounting tool (nntool) toolbox. 

Artificial neural network is a non-linear empirical method
20

 that is used in the prediction 

of an experimental effect, while its application is booming in many disciplines. It is, 

among others, a very interesting alternative method to traditional statistics for the data 

processing. 

Internal and external validation 

To determine the stability of the predictive model and to test the influence of each sample on 

the final model, two basic principles, internal validation and external validation, were carried 

out in this study. Cross-validation technique is one of the most popular methods for internal 

validation. In fact, there are at least three cross-validation techniques: “holdout method”, “k-

fold cross-validation” and “leave-one-out cross validation”. In this study, the internal 

predictive capability of the model was evaluated using leave-one-out cross-validation (Rcv). A 

good Rcv of ten indicates a good robustness and high internal predictive power of a QSAR 

model. However, recent studies
21

 indicate that there is no evident correlation between the value 

of Rcv and actual predictive power of a QSAR model, suggesting that the Rcv remains 

inadequate as a reliable estimate of the model’s predictive power for all new chemicals. To test 

that reliably predictive power, the use of a set of external validation, not used for the 

development of the model is required. As long as the original data set is large enough, the latter 

can be easily divided into two: a learning set in which the model is developed and a set of 

validation used to characterize its predictive power. 

Results and Discussion 

Data set for analysis 

QSAR study was performed using the activity values of 36 thiadiazole derivatives, as 

previously reported
12 

 to determine the quantitative relationship between the structures of the 

studied compounds and biological activity. The values of 12 chemical descriptors are shown 

in Table 2. 

Table 2. Values of the obtained parameters of the studied thiadiazoles 

N pIC50 MW MR MV Pc n D ET EHOMOELUMO ∆E µ log P 

1 4.932 385.40 97.67 265.60 36.597 1.66 1.45 -44404.76 -6.59 -2.84 3.75 3.04 1.844 

2 4.969 419.84 102.56 277.50 34.399 1.66 1.51 -56919.44 -6.70 -2.85 3.85 3.77 2.402 

3
*
 4.880 419.84 102.56 277.50 34.399 1.66 1.51 -56919.28 -6.41 -2.92 3.49 5.40 2.402 

4
*
 4.581 419.84 102.56 277.50 34.399 1.66 1.51 -56919.54 -6.69 -2.88 3.82 2.20 2.402 

  5 4.717 391.42 96.05 255.10 42.830 1.68 1.53 -53138.85 -6.38 -3.08 3.30 7.55 1.825 

  6 4.921 425.87 100.95 267.00 40.057 1.68 1.59 -65653.52 -6.70 -2.88 3.82 5.74 2.199 

7 4.882 470.32 103.74 271.20 46.026 1.69 1.73 -123149.92 -6.65 -2.87 3.78 6.74 2.534 

8 4.602 401.46 103.75 272.30 36.730 1.69 1.47 -53199.45 -6.37 -2.48 3.89 3.56 3.210 

9 4.463 435.91 108.65 284.20 34.520 1.69 1.53 -65714.15 -6.69 -2.93 3.76 6.05 3.768 
Contd….
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10
*

4.222 435.91 108.65 284.20 34.520 1.69 1.53 -65714.24 -6.70 -2.96 3.74 5.57 3.768 

11
*

4.618 435.91 108.65 284.20 34.520 1.69 1.53 -65714.25 -6.70 -2.97 3.73 4.39 3.768 

 12 4.549 407.49 102.14 261.70 42.999 1.71 1.56 -61933.62 -6.61 -2.93 3.69 6.03 3.191 

 13 4.624 441.94 107.03 273.70 40.210 1.71 1.61 -74448.23 -6.68 -2.96 3.72 5.14 3.565 

 14 4.608 486.39 109.83 277.90 46.214 1.72 1.75 -131944.63 -6.65 -2.96 3.69 5.21 3.900 

 15 4.983 399.43 105.86 254.80 37.730 1.77 1.56 -45371.46 -6.25 -2.81 3.44 5.62 3.856 

 16 4.693 433.87 110.46 264.10 35.430 1.78 1.64 -57886.14 -6.32 -2.82 3.50 5.92 3.039 

17
*

4.748 433.87 110.46 264.10 35.430 1.78 1.64 -57886.23 -6.35 -2.86 3.49 4.92 2.825 

18
*

4.367 433.87 110.46 264.10 35.430 1.78 1.64 -57886.24 -6.40 -2.72 3.68 3.96 3.956 

 19 4.592 405.45 104.45 237.20 44.267 1.83 1.70 -54105.54 -6.35 -2.87 3.49 5.42 3.756 

20 5.029 439.90 109.05 246.50 41.356 1.84 1.78 -66620.16 -5.81 -1.95 3.86 6.30 2.956 

21 4.797 484.35 112.01 249.70 47.628 1.85 1.93 -124116.56 -6.42 -2.90 3.52 4.48 2.984 

22 3.983 382.40 97.23 247.90 32.430 1.71 1.54 -43830.08 -6.25 -2.94 3.31 2.15 2.784 

23 3.955 399.42 103.40 243.00 32.209 1.80 1.64 -45370.34 -5.75 -2.84 2.91 8.11 1.894 

24 4.638 413.45 108.96 266.10 27.642 1.76 1.55 -46440.57 -5.75 -2.82 2.94 7.46 2.414 

25 4.482 427.48 113.57 282.10 25.050 1.74 1.51 -47511.32 -5.73 -2.80 2.93 8.00 2.753 

26 5.000 441.51 118.18 298.20 22.805 1.72 1.48 -48581.84 -5.73 -2.12 3.60 7.38 3.239 

27 4.959 455.53 122.79 314.20 20.850 1.71 1.44 -49652.19 -5.71 -2.82 2.89 7.61 3.656 

28 4.482 455.53 122.95 317.90 21.003 1.70 1.43 -49652.25 -5.20 -1.92 3.27 9.94 3.557 

29 5.046 489.55 134.26 334.70 21.693 1.73 1.46 -52732.28 -5.73 -2.82 2.91 7.91 4.288 

30 4.100 519.58 140.07 356.30 19.321 1.72 1.45 -55850.74 -5.72 -2.82 2.90 7.84 4.162 

31 4.022 483.54 126.43 309.10 22.355 1.75 1.56 -52737.79 -5.76 -2.83 2.92 7.31 2.555 

32 4.032 469.52 122.72 299.10 24.975 1.76 1.56 -51666.81 -5.77 -2.83 2.94 7.35 2.392 

33 3.155 425.46 112.35 262.40 34.888 1.80 1.62 -47478.41 -5.42 -3.00 2.42 5.80 0.821 

34 3.222 439.49 116.96 278.50 32.136 1.78 1.57 -48548.98 -5.57 -2.81 2.76 8.18 0.927 

35 4.143 436.28 100.16 268.90 40.777 1.67 1.62 -111329.43 -5.92 -2.86 3.06 5.18 3.579 

36 4.319 428.46 111.91 283.90 24.314 1.72 1.50 -48052.33 -5.73 -2.82 2.91 8.65 3.130 
* Test set 

Principal component analysis 

The total of 12 descriptors coding the 36 molecules was submitted to principal components 

analysis (PCA). The first three axes F1, F2 and F3 represent respectively (37.69%; 18.69% 

and 17.81%) of the total variance and they estimate 74.19% of the total information. 

 The PCA was conducted to identify the correlation between the different descriptors. It 

is also helpful for understanding the distribution of the compounds
20

. The correlation’s 

matrix of the 12 descriptors is shown in Table 3. 

 The correlation coefficients in the obtained matrix provide the information about the 

high or low interrelationship between the descriptors. Generally good co-linearity (r > 0.5) 

was present between the majority of the variables. In this study, no descriptor strongly 

correlated with the others. 

Multiple linear regressions  

The obtained descriptors were used for the development of a mathematical linear model to 

predict quantitatively the physicochemical effects of substituents on the antileishmanial activity 

of 30 thiadiazole derivatives using backward selection in the multiple regression analysis.  

 The study of the descendant MLR multiple linear regression based on the elimination of 

descriptors until a valid model was obtained methods were employed to determine the best 

regression models.  



Chem Sci Trans., 2019, 8(1), 77-90         83 

Table 3. Correlation matrix between different obtained descriptors 

Variables pIC50 ET EHOMO ELUMO µ ∆E log P MW MV MR n DPc

pIC50 1

ET -0.167 1

EHOMO -0.424 0.381 1

ELUMO 0.222 0.160 0.456 1

µ -0.159 0.181 0.707 0.292 1

∆E 0.616 -0.320 -0.817 0.142 -0.597 1

log P 0.416 -0.227 -0.163 0.155 -0.011 0.282 1

MW -0.033 -0.446 0.249 0.099 0.379 -0.213 0.364 1

MV -0.022 0.135 0.384 0.167 0.455 -0.318 0.354 0.695 1

MR -0.168 0.149 0.612 0.256 0.582 -0.515 0.313 0.796 0.837 1

n -0.229 0.006 0.372 0.169 0.194 -0.304 -0.066 0.153 -0.323 0.247 1

D 0.014 -0.680 -0.233 -0.086 -0.193 0.203 -0.057 0.176 -0.584 -0.240 0.629 1

Pc 0.185 -0.608 -0.677 -0.281 -0.523 0.571 -0.098 -0.290 -0.756 -0.722 0.099 0.707 1

 Many attempts have been made to develop a relationship with the indicator variable of 

activity pIC50, but the best relationship obtained by this method is only one corresponding to 

the linear combination of three descriptors selected, the energy ELUMO, the energy EHOMO and 

the octanol/water partition coefficient log P. 

    The resulting equation is:  

pIC50 = 2.0453 – 0.6673 EHOMO + 0.7821 ELUMO + 0.1898 log P                 (1) 

 The positive correlation of these factors ELUMO and log P with the value of the pIC50 in 

eq. 1 shows that an increase in the values of these factors implies an increase in the value of 

the pIC50, whereas a negative correlation of the EHOMO shows that an increase in the value of 

this factor indicates a decrease in the value of the pIC50. The correlations of the predicted 

and observed activities are illustrated in Figure 1. 

 
Figure 1. Graphical representation of calculated and observed activity by MLR 
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 Where N is the number of compounds, R is the coefficient of correlation, Rcv is the 

coefficient of correlation for cross-validation, MSE is the mean squared error, F is the 

Fisher’s criterion and P is the significance level. 

 High coefficient of correlation (R=0.75) and lower mean squared error indicate that the 

model is more reliable. P is smaller than 0.05 means that the obtained equation is 

statistically significant at the 95% level. The obtained model was cross-validated by its 

applicable Rcv value (Rcv= 0.722) using the leave-one-out (LOO) method. The value of 

Rcv greater than 0.5 is the basic criteria to qualify a model as valid
22

. This reported model 

was also used to predict the pIC50 values of the remaining 6 compounds in the test set. Such 

predicted values are also recorded in Table 5. Rtest is 0.84 and mean squared error MSEtest is 

0.119, which confirms that the proposed model has a better predictive ability. The 

correlation coefficients among descriptors in the model were calculated using the variance 

inflation factor (VIF), as shown in Table 4. 

Table 4. The variance inflation factors (VIF) of descriptors in QSAR model 

Statistique EHOMO ELUMO log P 

Tolerance 0.773 0.758 0.915 

VIF 1.294 1.319 1.093 

 The VIF was defined as 1/(1−R
2
), where R is the multiple correlation coefficient for an 

independent variable against all other descriptors in the model. If VIF is greater than 5, the 

models are unstable and must be eliminated; models with a VIF value of 1 to 4 can be 

accepted. Table 4 shows that all of the VIF values of the three descriptors are smaller than 5.0. 

Thus, there is no collinearity among the selected descriptors, and the obtained model is stable. 

 With the MLR models, the values of predicted pIC50 calculated from equation 1 the 

observed values are given in Table 5. 

Multiple non-linear regressions 

We also used a non-linear regression model to improve the structure-activity relationship 

and to evaluate the effect of the substituent. We applied the proposed descriptors by multiple 

linear regressions for 30 molecules in the whole formation and we used the correlation 

coefficient (R) and the Mean squared error (MSE) to select the best performance of 

regression. We used a pre-programmed function of XLSTAT as follows: 

Y = a + (b X1+ c X2 + d X3+ e X4…)                                 (2) 

 Where  a, b, c, d...: represent the parameters and X1, X2, X3, X4….: represent the 

variables. 

The resulting equation: 

pIC50 = -7.544 – 3.591 EHOMO + 0.5711 ELUMO + 0.7071 log P – 0.247 EHOMO
2
 – 0.025 

ELUMO
2 
– 9.724 10

-2 
log P

2  
                       (3) 

Where N = 30, R = 0.782, RCV = 0.744, MSE = 0.121, Ntest = 6, Rtest = 0.850, MSEtest = 0.126                                              

 The activity values pIC50 predicted by this model are almost similar to that observed. 

The Figure 2 shows a very regular distribution of activity values based on the observed 

values.  The obtained coefficient of correlation in equation 3 is quite very interesting 

(0.782). The QSAR model expressed by equation 3 is cross-validated by its appreciable Rcv 

values (Rcv = 0.744) obtained using the leave-one-out (LOO) method. A value of Rcv is 

greater than 0.5 is the important criterion for qualifying a QSAR model as valid
22

. 
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Figure 2. Graphical representation of calculated and observed activity by MNLR 

 The robustness and predictive power of the model were further supported by the 

significant Rtest value (0.850) of the test set data. The observed and calculated pIC50 values 

are given in Table 5. 

 According to metric values, internal and external, the results obtained by MNLR are 

relatively better than those obtained by MLR, but the latter approach is more transparent and 

gives the most interpretable results and a good explanation of the descriptors associated with 

antileishmanial activity of 36 thiadiazole derivatives. 

Artificial neural networks ANN 

In order to increase the probability to characterize the compounds, artificial neural network 

can be used to generate predictive models of quantitative structure-activity relationship 

between a set of molecular descriptors obtained from the multiple linear regression and the 

observed activities. The ANN calculated activity model was developed using the parameters 

of the studied compounds. The correlation between ANN calculated and experimental 

activity values are very significant as illustrated in Figure 3. 

N = 30, R = 0.967,  RCV = 0.720, MSE = 0.118, Ntest = 6,  Rtest = 0.802,  MSEtest = 0.110  

 

Figure 3. Correlations of observed and predicted activities calculated using ANN 
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 The obtained correlation coefficient (R) value is 0.967 for this data set of the thiadiazole 

derivatives. This confirms that the artificial neural network (ANN) results are the best to 

predict the quantitative structure-activity relationship model. Furthermore, the good results 

obtained with test set shows that the ANN model is the high predictive power. The predicted 

activities calculated with the artificial neural network and the observed values are given in 

Table 5. A comparison of the quality of MLR, MNLR and ANN models shows that the 

ANN model have substantially better predictive capability because the ANN approach gives 

better results than MLR and MNLR. ANN was able to establish a satisfactory relationship 

between the selected descriptors and the activity of the studied compounds. 

Table 5. Observed and predicted values of pIC50 according to different methods  

        pIC50 (calcd.)                                                       pIC50 (calcd.)                         

N° pIC50 (obs.) MLR MNLR ANN N° pIC50 (obs.) MLR MNLR ANN 

1 4.932 4.573 4.535 4.922 19 4.592 4.755 4.734 4.940 

2 4.969 4.741 4.724 4.793 20 5.029 4.959 5.007 4.504 

3* 4.880 4.497 4.576 4.713 21 4.797 4.631 4.703 3.690 

4* 4.581 4.718 4.704 4.865 22 3.983 4.444 4.563 4.115 

5 4.717 4.242 4.278 4.828 23 3.955 4.019 4.098 4.120 

6 4.921 4.679 4.651 4.607 24 4.638 4.140 4.268 5.163 

7 4.882 4.722 4.729 4.276 25 4.482 4.199 4.329 4.432 

8 4.602 4.969 4.999 4.534 26 5.000 4.821 4.859 4.645 

9 4.463 4.930 4.809 4.366 27 4.959 4.342 4.377 5.024 

10* 4.222 4.916 4.794 5.324 28 4.482 4.685 4.537 4.390 

11* 4.618 4.908 4.786 4.471 29 5.046 4.479 4.354 4.030 

12 4.549 4.775 4.773 4.718 30 4.097 4.448 4.359 4.114 

13 4.624 4.864 4.788 4.894 31 4.022 4.156 4.290 3.138 

14 4.608 4.906 4.772 5.012 32 4.031 4.136 4.265 4.940 

15 4.983 4.749 4.721 4.833 33 3.155 3.471 3.236 4.504 

16 4.693 4.632 4.717 4.116 34 3.222 3.739 3.560 2.409 

17* 4.748 4.585 4.677 4.975 35 4.143 4.436 4.497 4.216 

18* 4.367 4.936 4.847 4.408 36 4.319 4.254 4.365 4.231 

* Test set 

Domain of applicability 

To estimate the reliability of any QSAR model and its ability to predict new compounds, the 

domain of applicability must be essentially defined
23

. The predicted compounds that fall 

within this domain may be considered as reliable. The applicability domains were discussed 

with the Williams graphs in Figures 4 and 5 of the MLR and MNLR models respectively, 

which the standardized residuals and the leverage values (hi) are plotted. 

 It is based on the calculation of the leverage hi for each molecule, for which QSAR 

model is used to predict its activity: 

ℎ� = �� (�� �)-1 ��
�     � = 1… n                                                  (4) 

 Where xi is the row vector of the descriptors of compound i and X is the variable matrix 

deduced from the training set variable values. The index T refers to the matrix/vector 

transposed. The critical leverage h
*
 is generally fixed at (3k+1)/N, where N is the number of 

training molecules, and k is the number of model descriptors. If the leverage value h of 

molecule is higher than the critical value (h
*
) i.e., h > h

*
, the prediction of the compound can 

be considered as not reliable. 
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 From Figure 4, the leverage values (hi) of any compound in the training and test sets are 

less than the critical value (h
*
 = 0.4). Also, the standardized residuals of all compounds in 

the training and test sets are less than three standard deviation units (±3σ). Therefore, the 

predicted activity by the developed MLR model is reliable.  

 The Williams plot for the MNLR model is shown in Figure 5. It is obvious that there is 

no outlier in training set and no outside in test set. Therefore, the predicted activity by the 

MNLR model is reliable. 

 
 

Figure 4. Williams plot for the MLR model (with h
*
 = 0.4 and residual limits = ±3σ) 

 
 

Figure 5. Williams plot for the MNLR model (with h
*
 = 0.4 and residual limits = ±3σ) 

Proposed novel compounds 

Consequently, with MLR and MNLR approaches, we can design new compounds with 

different and improved values of antileishmanial activity than the studied compounds (Table 6). 

Taking into account the above results, we added suitable substitutions and then calculated 

the activities of the new compounds using the proposed model in equation1 and 2. 
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Table 6. Proposed compounds, values of calculated descriptors, and predicted values of 

pIC50 using MLR and MNLR model 

S

NN

N

N Ar

Het

 

S
N

+

O
-

O

 =Het2N
H

N

N
+

O
-

O

 =Het3
O

N
+

O
-

O

 =Het1

 

 Ar Het EHOMO ELUMO Log P 
pIC50 

RLM 

pIC50 

RNLM 
h 

X1 

O

.

S Cl

 

NHCH2C6H4OCH3 -4.055 -1.801 4.16 4.16 3.09 0.272 

X2 

O

.

S Br

 
NHCH2C6H4OCH3 -4.598 -1.456 4.622 4.85 4.05 0.398 

X3 .

NHBu

NH  

NHCH2CHCH2 -4.931 -2.025 4.831 4.67 4.04 0.301 

X4 
O

.

Cl

Cl

Cl

 

Het1 -5.232 -2.775 4.67 4.25 3.88 0.388 

X5 

O

.

S NO2

 
Het1 -5.732 -2.377 2.307 4.45 4.53 0.069 

X6 

O

.

O Br

 

Het1 -5.555 -2.224 2.687 4.52 4.58 0.071 

X7 

O

.

S NO2

 

Het2 -5.556 -2.278 2.673 4.48 4.547 0.05 

X8 
O

.

F

F

F

 

Het3 -6.312 -2.155 4.340 5.40 5.171 0.312 

 The leviers h of new compounds are less than the critical value (h
*
 = 0.4) Therefore are 

regarded reliable compounds for design new compounds with different and improved values 

of activity than the studied compounds. These results provided here can be used for drug 

design and development of new and safer drugs is warranted. 

Conclusion 

The statistical analysis methods were used to develop quantitative structure–activity 

relation models of the antileishmanial activity of (5-nitroheteroaryl-1,3,4-thiadiazole-2-yl) 

piperazinyl derivatives. The artificial neural network had substantially better predictive 

capability than the multiple linear and non-linear regressions, with greater predictive 

power. We established satisfactory relations between several descriptors and 

antileishmanial activity. The results show that the proposed models in this paper can predict 

activity accurately and that the selected descriptors are  pertinent to explain this activity.  
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The accuracy and predictability of the proposed models were illustrated by comparison of 

the key statistical indicators r or r2 for the different models (Table 5). The applicability 

domain of the proposed models was investigated using William‘s plot to detect the subspace 

of chemical structures that can be predicted reliably by the two regressions models. The 

proposed methods will reduce the time and cost of synthesis and determination of the 

antileishmanial activity of (5-nitroheteroaryl-1,3,4-thiadiazole-2-yl) piperazinyl derivatives. 

Furthermore, the descriptors are sufficiently rich in chemical, electronic and topological 

information to encode structural features that could be used with other descriptors in the 

development QSAR models. 
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